Electronic Supporting Information(ESI)

Preparation of crosslinker-free anion exchange membranes with excellent

physicochemical and electrochemical properties based on crosslinked PPO-SEBS

Seounghwa Sung^{a,b,‡}, Ji Eon Chae^{c,‡}, Kyungwhan Min^{a,b}, Hyoung-Juhn Kim^c, Sang Yong Nam^d and Tae-Hyun Kim^{*a,b}

^aOrganic Material Synthesis Laboratory, Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea.

^bResearch Institute of Basic Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea.
 ^cCenter for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology, Seoul 136-791, Korea
 ^dDepartment of Energy Engineering, Gyeongnam National University of Science and Technology, Jinju 52725, Korea

‡ These authors contributed equally to this work.

Figure S1. Schematic diagram of gas permeability test system¹

Figure S2. ¹H-NMR spectra for the (a) Br-PPO 2, (b) N_3 -PPO 3, and (c) DMT-PPO 4

Figure S3. IR spectra for the Br-PPO 2 (black), N_3 -PPO 3 (red), and DMT-PPO 4 (blue)

Figure S4. ¹H-NMR spectra for the (a) Br-Hex-CO-SEBS 5, and (b) Br-Hex-SEBS 6

Figure S5. IR spectra for the Br-Hex-CO-SEBS 5 (black) and Br-Hex-SEBS 6 (red)

Figure S6. Photographs of (a) x20-PPO-SEBS, (b) x30-PPO-SEBS, (c) x40-PPO-SEBS, and (d) x50-PPO-SEBS

Figure S7. Temperature dependence of hydroxide ion conductivity of xTQAn-PPO-SEBS membranes in water

Figure S8. The hydroxide ion conductivity the xTQAn-PPO-SEBS developed in the current study compared with other PPO- and SEBS-based AEMs reported in the literature at 20 °C [9-11,17,23,24,44,61,62,64,66].

Figure S9. Single-cell performances of xTQAn-PPO-SEBS(30 μm), QA-PPO, and QA-SEBS at 60°C and 95% RH

Figure S10. SEM surface image of xTQA50-PPO-SEBS membrane after the single-cell 300h durability test

Membrane Code	xTQA20-PPO-	xTQA30-PPO-	xTQA40-PPO-	xTQA50-PPO-
	SEBS	SEBS	SEBS	SEBS
Gel fraction (%)	98.7	95.4	93.3	95.4

Table S1. Gel fractions of the xTQAn-PPO-SEBS membranes

Table S2. Tensile strengths, elongations at break, and Young's moduli of xTQAn-PPO-SEBS membranes at 50% RH and in a wet state

Membrane code	Tensile strength (MPa)	Elongation at break (%)	Young's modulus (MPa)

	50% RH	Wet	50% RH	Wet	50% RH	Wet
xTQA20-PPO-SEBS	20.5	7.6	158.8	202.1	122.7	14.4
xTQA30-PPO-SEBS	24.4	11.7	151.6	175.5	182.8	37.2
xTQA40-PPO-SEBS	31.2	13.7	116.2	140.6	260.3	48.2
xTQA50-PPO-SEBS	34.3	18.1	91.6	106.4	401.7	128.1

Table S3. Water contents and fractions of water in each state for xTQAn-PPO-SEBS membranes with different degrees of crosslinking calculated from DSC plots

	W	ater content (%	Ratio (%)		
Membrane Code	Total	Freezing	Bound	[Freezing]	[Bound]
		110028	Dound	/[Total]	/[Total]
xTQA20-PPO-SEBS	110.6	24.3	86.3	22.0	78.0
xTQA30-PPO-SEBS	100.0	21.4	78.7	21.4	78.6
xTQA40-PPO-SEBS	85.3	17.7	67.6	20.8	79.2
xTQA50-PPO-SEBS	67.2	13.6	53.6	20.2	79.8

 Table S4. Hydroxide ion conductivity in 20°C water of the xTQA50-PPO-SEBS membrane before and after the
 single-cell

durability test

Membrane Code	IEC (m	eq/g)	OH- conductivity (mS/cm)		
	Before Durability test	After durability test	Before durability test	After durability test	
xTQA50-PPO- SEBS	1.43 ± 0.03	1.39 ± 0.08	43.1 ± 0.14	42.3 ± 0.02	

300h

Operation temp Backpressure Maximum power Durability IEC Membrane Code density Ref (°C) (MPa) (meq/g) (mW/cm^2) (h) xTQA50-PPO-This 300 1.43 60 0 405 SEBS (at 0.2A/cm2) work HQA-C12-SEBS 1.31 60 0 163 11 _ T20NC6NC5N 2.47 60 0.1 364.2 _ 17 m-QPPO-50 1.93 60 0 333 23 -40 0 PPO-ASU-30 1.6 60 124.7 24 (at 0.3V) SEBS-CH2-QA-1.5 94.6 60 0 1.23 42 -75-QA-HQA-2.13 60 0 315 44 xSEBS 110 2.19 0.1 60 SEBS-TMA 60 223 (at 0.3V) 0 SEBS30-TMA 1.35 70 300 61 -HPPO/PPO-C8 2.69 60 0 222 62 _ AEM Pc-PPO-10 80 0 343.8 1.36 -63 5.5 LSCPi 1.55 60 0 116 64 (at 0.1A/cm²) 48 PO-CE0.10-QA0.90 80 0 2.25 194.6 65 (at 0.1A/cm²)

Table S5. Comparison of the hydrogen/oxygen fuel cell performances of different membranes collected from the open literature

Im-PPO-45	3.4	60	0	224.84	-	66
Aligned 6%-QA- Fe3O4/TA-PPO	2.41	80	0	224	-	67
xBEO-PPO	1.93	70	0	444	-	68

Reference

F. Zhou, H. N. Tien, W. L. Xu, J. T. Chen, Q. Liu, E. Hicks, M. Fathizadeh, S. Li and M. Yu, *Nat. Commun.*, 2017, 8, 21074