Supporting Information

Exceptionally large energy cathode with K-SO₄-Cu conversion reaction for potassium rechargeable batteries

Yongseok Lee^a, Jung-Keun Yoo^b, Hyunyoung Park^a, Wonseok Ko^a, Jungmin Kang^a, Jae Hyeon Jo^c, Gabin Yoon^d, Hyeon-Gyun Im^e, Hitoshi Yashiro^f, Seung-Taek Myung^a, and Jongsoon Kim^{a,*}

^aDepartment of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea

^bCarbon Composites Department, Composites Research Division, Korea Institute of Materials Science (KIMS), 797 Changwondaero, Changwon, Republic of Korea

°New Energy Laboratory, Korea Electronic Power Research Institute, Daejeon, 34056 South Korea

^dNext Generation Battery Lab., Samsung Advanced Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
^eInsulation Materials Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute (KERI), Chang Won, 51543, Republic of Korea
^fDepartment of Chemistry and Bioengineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan

Corresponding Authors: Prof. Jongsoon Kim (jongsoonkim@sejong.ac.kr).

High-energy ball milling (For nano-sizing + carbon coating)

Nano-sized CuSO₄/carbon composite (N-CSO/C)

Fig. S1 Scheme of preparation of N-CSO/C using high-energy ball milling

Fig. S2 Thermogravimetric (TGA) spectra profiles of pristine CuSO₄ and N-CSO/C composite

Fig. S3 (a) Charge/discharge curve, (b) differential capacity (dQ/dV) of initial cycle of N-CSO/C at current rate of 12 mA g⁻¹ in the voltage range of 1.1-4.1 V (*vs.* K⁺/K)

Fig. S4 Comparing (a) SEM images, (b) SAED patterns of N-CSO/C before cycle and after 200 cycles

Fig. S5 CV profiles of the N-CSO/C electrode measured at 1 mV s $^{-1}$.

Fig. S6. Charge/discharge curves of one- and two-times pre-cycled hard carbon in the voltage range of 0.01-2.0 V (*vs.* K^+/K) at 30 mA g⁻¹

Fig. S7. Cycle performances of N-CSO/C-based full-cell using one- and two-times pre-cycled hard carbon in the voltage range of 0.01-2.0 V (*vs.* K⁺/K) at 30 mA g⁻¹.

Fig. S8 (a) Charge/discharge curves of pristine $CuSO_4$ at various current rates (b) Comparing cyclic performance between pristine $CuSO_4$ and N-CSO/C during 200 cycles at 360 mA g⁻¹ after 1 cycle at 120 mA g⁻¹

Fig. S9 Electrochemical impedance spectra profiles of pristine CuSO₄ and N-CSO/C composite

Fig. S10 Each voltage points of preparation samples on charge/discharge curve of N-CSO/C for *operand/ex-situ* XRD, ToF-SIMS, XANES and EXAFS measurements

Fig. S11 Ex-situ XRD patterns of N-CSO/C electrodes with the expanded regions

Fig. S12 Electrochemical impedance spectra profiles of fully charged/discharged N-CSO/C electrode

Table S1 (a) Predicted theoretical redox potentials of CuSO₄ and CuO using first principles calculation (b) Formation energies of CuSO₄, K₂SO₄, Cu and K obtained by first principles calculation

<u>u</u>						
$CuSO_4(vs. K^+/K): CuSO_4 + 2K^+ + 2e^- \leftrightarrow Cu + K_2SO_4$						
Compound	Final E/atom (eV/f.u.)	Final E (eV/f.u.)				
$CuSO_4$	-5.7117	-34.2702				
2К	-1.1103	-2.6226				
K_2SO_4	-5.6185	-39.3295				
Cu	-4.0993	-4.0993				
Theoretical voltage of $CuSO_4$: -3.268 (vs. K ⁺ /K)						
$CuO(vs. K^+/K): CuO + 2K^+ + 2e^- \leftrightarrow Cu + K_2O$						
Compound	Final E/atom (eV/f.u.)	Final E (eV/f.u.)				
CuO	-4.9490	-9.8980				
2К	-1.1103	-2.6226				
K ₂ O	-3.3780	-10.134				
Cu	-4.0993	-4.0993				
Theoretical voltage of CuO : -1.7127 (vs. K ⁺ /K)						
b						
Compoun	d Form	nation energy (eV/f.u.)				
$CuSO_4$		-34.2702				
K_2SO_4		-39.3295				
Cu		-3.75383				
K		-1.1103				

а

Counter metal	Conversion reaction	Theoretical voltage
Na	$CuSO_4 + 2Na^+ + 2e^- \leftrightarrow Cu + Na_2SO_4$	3.195 V (vs. Na+/Na)
Mg	$CuSO_4 + Mg^{2+} + 2e^- \leftrightarrow Cu + MgSO_4$	2.775 (vs. Mg ²⁺ /Mg)
K	$\mathrm{CuSO}_4 + 2\mathrm{K}^+ + 2e^- \leftrightarrow \mathrm{Cu} + \mathrm{K}_2\mathrm{SO}_4$	3.268 V (vs. K ⁺ /K)

Table S2 Comparison of theoretical voltage of CuSO4 corresponding to counter metal of Na,Mg and K

Sample	a (Å)	b (Å)	c (Å)	A (°)	B (°)	γ (°)	Volume (Å ³)
CuSO ₄	8.479	6.754	4.957	90.0000	90.00	90.0000	283.87

 Table S3 Lattice parameters of pristine CuSO4

 Table S4 Comparison of electrochemical performances with previously reported various full

cells for PRBs

Cathode material	Anode material	Electrolyte	Initial capacity (Current density)	Cycle retention	Voltage range (V)	Ref.
CuSO ₄	Hard carbon	0.5 M KPF ₆ in EC:DEC (1:1, v:v)	202 mAh g ⁻¹ (360 mA g ⁻¹)	85 % after 300 cycle	1.0-4.0	This work
P2-type K _{0.6} CoO ₂	Hard carbon	0.9 M KPF ₆ in EC:DEC (1:1, v:v)	71 mAh g ⁻¹ (30 mA g ⁻¹)	80 % after 100 cycle	0.5-3.8	41
P3-type $K_{0.5}[Mn_{0.8}Fe_{0.1}Ni_{0.1}]$ O_2	Hard carbon	0.5 M KPF ₆ in EC:DEC (1:1, v:v)	113 mAh g ⁻¹ (30 mA g ⁻¹)	89 % after 150 cycle	0.5-3.6	36
$K_2V_3O_8$	Hard carbon	0.5 M KPF ₆ in EC:DEC (1:1, v:v)	61 mAh g ⁻¹ (20 mA g ⁻¹)	87 % after 50 cycle	0.5-3.8	42
K _{0.3} MnO ₂	Hard carbon /Carbon black composite	1.5 M KFSI in EC:DEC (1:1, v:v)	90 mAh g ⁻¹ (32 mA g ⁻¹)	50 % after 100 cycle	0.5-3.4	37
$K_{0.7}Fe_{0.5}Mn_{0.5}O_2$	Soft carbon	0.8 M KPF ₆ in EC:DEC (1:1, v:v)	48 mAh g ⁻¹ (100 mA g ⁻¹)	76 % after 250 cycle	0.5-3.5	16
$K_{0.220}$ Fe[Fe(CN) ₆] _{0.8} ₀₅ ·4.01H ₂ O	Super P	0.8 M KPF ₆ in EC:DEC (1:1, v:v)	65 mAh g ⁻¹ (100 mA g ⁻¹)	93 % after 50 cycle	1.0-3.8	43
K _{0.69} CrO ₂	Graphite	1.0 M KFSI, 6 wt % DTD in PC	78 mAh g ⁻¹ (100 mA g ⁻¹)	54 % after 100 cycle	0.8-3.8	44