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Fig. S1. (a) TEM micrographs of Au-nanospheres@NiOx with shell thickness of ~15 nm. (b) 
TEM micrographs of Au-nanoprism@NiOx with shell thickness of ~3 nm. (c) TEM 
micrographs of Au-nanosphere@NiOx with shell thickness of ~3 nm.
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Fig. S2. UV-vis spectra of bare Au as well as Au@SiO2 NPs in ethanol.

Fig. S3. Top view SEM image of mp-NiOx film doped with Au@NiOx NPs and EDX mapping 
results of the same region. 
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pristine mp-NiOx

with Au@NiOx (10 wt%)

Fig. S4. The photographs of the mp-NiOx films cast on quartz glass with or without Au@NiOx 
NPs (10 wt%).

Fig. S5. Top view SEM images of the CsFA perovskite films on mp-NiOx films with Au@SiO2 
(5 wt%) incorporation.
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Fig. S6. X-ray diffraction patterns of CsFA perovskite films on pristine mp-NiOx and Au@NiOx 
embedded mp-NiOx films. The labeled signal is corresponding to the residual PbI2.
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pristine 20.24 1.11 79.07 17.76

with 21.63 1.13 81.26 19.86

Fig. S7. (a) J–V curves of the champion PSCs prepared with the pristine and Au@NiOx 
containing mp-NiOx layer measured with backward scans. The right table shows the 
performance of mesoporous PSCs without surface treatment. (b) Wavelength-dependent EQE 
and integrated JSC curve for the pristine and Au@NiOx embedded PSCs. (c) Enhanced EQE 
ratio of device caused by the Au@NiOx NPs incorporation.
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Table S1. Performance of champion CsFA device based on mp-NiOx without and with incorporation 
of plasmonic NPs.  

Materials Scan Direction JSC  (mA cm−2) VOC (V) FF (%) PCE (%) hysteresis index (HI)a

pristine Forward 20.32 1.12 77.07 17.54

pristine Reverse 20.40 1.12 79.72 18.21
0.026

with Au@SiO2 Forward 20.87 1.12 76.15 17.80

with Au@SiO2 Reverse 20.86 1.12 79.28 18.52
0.034

with Au@NiOx Forward 21.80 1.15 81.06 20.32

with Au@NiOx Reverse 21.75 1.15 82.42 20.61
0.011

a)The definition of hysteresis index (HI) value is [HI = 1– JFS(0.8VOC)/JRS(0.8VOC)], where JRS(0.8VOC) and 
JFS(0.8VOC) stand for photocurrent density at 80% of VOC for the reverse and forward sweep, respectively.

Fig. S8. Stabilized PCEs at maximum power point output of the champion PSC prepared on 
Au@NiOx containing mp-NiOx layer.
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Table S2. Summary of MA-free mesoporous PSCs with high efficiencies under simulated solar 
light condition (AM 1.5).

Perovskite Materials Device Structure
JSC  

(mA cm-

2)

VOC 
(V) FF PCE 

(%)a
PCE 
(%)b

Rb0.05FA0.95PbI3
(bandgap 1.53 eV)

FTO/bl-TiO2/mp-TiO2/
perovskite/ Spiro-OMeTAD/Au 23.93 1.07 0.67 17.21 16.8

Cs0.20FA0.80PbI3-(Cl)
(bandgap 1.56 eV)

FTO/bl-TiO2/mp-TiO2/
perovskite/ Spiro-OMeTAD/Au 24.10 1.10 0.78 20.62 19.9

(Cs0.17FA0.83)Pb(I0.89Br0.08
Cl0.03)3 (bandgap 1.58 eV)

FTO/bl-TiO2/mp-TiO2/SnO2/
perovskite/Spiro-OMeTAD/Au 23.28 1.12 0.78 20.53 ─

(CsPbBr3)0.06(FAPbI3)0.94
(bandgap 1.55 eV)

FTO/bl-TiO2/mp-TiO2/
perovskite/ Spiro-OMeTAD/Au 24.52 1.15 0.78 21.84 21.1

(Cs0.15FA0.85)Pb(I0.9Br0.1)3
(bandgap ~1.58 eV)

FTO/bl-NiOx/mp-CuGaO2/ 
perovskite/PC61BM/BCP/Ag 23.19 1.11 0.80 20.75 20.2

(Cs0.17FA0.83)Pb(I0.8Br0.2)3
(bandgap 1.61 eV)

FTO/bl-NiOx/mp-NiOx/ 
perovskite/bFPI/PC61BM/BCP/Ag 21.75 1.15 0.82

20.6
(this 

work)
20.1

a)Measured from J-V curve; 
b)measured from steady-state power output; 
c)The bandgap values are quoted from references and some values are not explicitly stated. In such case, we 
extracted the optical bandgap values from corresponding absorption spectra.
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Fig. S9. (a) J–V characteristics for inverted mesoporous solar cells with increasing Au@NiOx 
concentration (0 ≤ Au@NiOx ≤ 8 wt%). (b) Variations in PCE valule of CsFA devices as a 
function of the doping concentration of Au@NiOx in mp-NiOx layer.
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Fig. S10. The J-V curve from the reverse scan (from Voc to Jsc) and forward scan (from Jsc to 
Voc) for the champion (a) pristine and (b) Au@NiOx-modified devices under 1 Sun condition.

Device JSC 
(mA cm-2)

VOC
(V)

FF  
(%)

PCE 
(%) 

With bare 
Au NPs 20.42 1.10 76.17 17.11
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Fig. S11. J–V curves of the control PSC device fabricated on bare Au containing mp-NiOx. The 
inset show the photovaltics parametars. 
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Fig. S12. UV–vis spectra (obtained with an integrating sphere) of CsFA perovskite films 
deposited on mp-NiOx films without and with Au@NiOx (5 wt%) incorporation.
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Fig. S13. VOC versus light intensity for the CsFA PSCs without and with Au@NiOx 
incorporation. A natural logarithmic relationship between VOC and light intensity yields a slope 

of , where n is the ideality factor, k is the Boltzmann’s constant, T is the 
𝑛=

𝑞
𝑘𝑇

𝑑𝑉𝑂𝐶
𝑑ln (𝜑)

temperature, and q is an elementary charge, according to the Shockley–Read–Hall theory.

Table S3. The electrical properties of mp-NiOx film extracted from Hall effect measurement 
measurements and four-probe measurement.

mp-NiOx film
hole conductivity 

σp (Ω cm-2)a
hole concentration 

p (cm-3)b
hole mobility 
μp (cm2/V·s)c

pristine 3.2 × 10-4 3.9 × 1017 5.1 × 10-3

with Au@NiOx 7.7 × 10-3 5.4 × 1018 8.9 × 10-3

with Au@SiO2 5.2 × 10-4 6.1 × 1017 5.3 × 10-3

a)Measured from four-probe measurement; b)Measured from Hall effect measurement;
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c)Obtained by derivation of equation .𝜎𝑝= 𝑝𝑞𝜇𝑝
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Fig. S14. J-V characteristics for conductivity test of pristine, Au-doped, Au@SiO2-doped and 
Au@NiOx-doped mp-NiOx films obtained by linear sweep voltammetry under simulated 
sunlight (AM1.5). 
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Fig. S15. Capacitance-voltage curve plotted according to Mott–Schottky relation for pristine 
and Au@NiOx containing devices at 1 kHz. These plots directly demonstrate the higher flat-
band potential of the modified device compared with the pristine device, which is related to an 
increase in VOC.



10

0 200 400 600 800 1000
10-2

10-1

100

PL
 In

te
ns

ity
 (N

or
m

al
iz

ed
)

Time after excitation (ns)

 bare perovskite
 on pristine mp-NiOx
 on modified mp-NiOx 

Fig. S16. Time-resolved PL spectra (probed at 775 nm) of CsFA perovskite deposited on quartz 
glass, pristine mp-NiOx film and Au@NiOx containing mp-NiOx film.

Table S4. Time resolved photoluminescence characterization of the perovskite films on 
various substrates.

Sample τ1 (ns) Fraction 1 τ2 (ns) Fraction 2 Average (ns)

on glass 23.9 42.7% 438.6 57.3% 261.4
on pristine mp-

NiOx
6.5 82.1% 95.6 17.9% 22.4

on Au@NiOx 
containing mp-

NiOx

4.1 89.7% 34.8 10.3% 7.3

Note: The decay is fitted with bimolecular model: , (τ1 
𝐼(𝑡) = 𝐼0 + 𝐴1exp ( ‒ 𝑡 𝜏1) + 𝐴2𝑒𝑥𝑝⁡( ‒

𝑡
𝜏2
)

and τ2 give the fast and slow decay time constant, A1 and A2 are fractions of the decay processes. 
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Fig. S17. Dark J–V of the hole-only devices without and with Au@NiOx modification as 
determined by the space-charge-limited current (SCLC) method, displaying VTFL kink point. 
The trap density Ntrap is determined by the equation: VTFL = eNtrapL2/(2ɛɛ0), where VTFL is trap-
filled limit voltage, L is the thickness of CsFA film, ɛ is the relative dielectric constant of 
perovskite, and ɛ0 is the vacuum permittivity.
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Fig. S18. TPV decay curve under white bias light with intensity equivalent to 0.1-Sun (10 mW 
cm-2) generated by white light source with small voltage perturbation (532 nm).
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Fig. S19. Stability evaluation. (a) UV-visible absorption of (Cs0.17FA0.83)Pb(I0.8Br0.2)3 (CsFA) 
perovskite film on Au@NiOx-doped mp-NiOx scaffold before and after annealing in air at 85 
oC for 48 hours under ambient condition with 50–70% RH. The insets show the corresponding 
optical images. (b) Thermal aging testing of unencapsulated devices without and with 
modification. (c) Aging testing of encapsulated devices heated continuously at 85 °C tracked 
by PCE measurement at periodic intervals for 12 h. (d) Operational stability measurement of 
the unencapsulated devices based on Au@NiOx-modified PSCs under continuous 1-sun 
illumination at ambient condition with 50–70% RH. 
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