Electronic Supplementary Material (ESI)

Stacking design in photocatalysis: Synergizing cocatalyst roles and anti-corrosion functions of metallic MoS₂ and graphene for remarkable hydrogen evolution over CdS

Qian Liu,^a Shihong Wang,^a Qinhao Ren,^a Tianyu Li,^a Gaomei Tu,^c Shuxian Zhong,^b Yuling Zhao,^{a*} Song Bai^{a*}

^a Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P. R. China.

^b College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China.

^c Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua 321004, P. R. China.

E-mail: songbai@zjnu.edu.cn; yulingzhao@zjnu.edu.cn

Additional experimental

Preparation of graphite oxide

Graphite oxide was synthesized from natural graphite flakes by a modified Hummers method.^{S1} In a typical procedure, 2.0 g of graphite powder was added to concentrated H₂SO₄ (80 mL) in a 500 mL flask in an ice bath. Under vigorous stirring, KMnO₄ (10.0 g) and NaNO₃ (4.0 g) were gradually added, while the temperature of the mixture was maintained below 10 °C for 4 h. Subsequently, the reaction mixture was stirred at 35 °C for another 4 h until it became pasty and green. The mixture was then diluted with water (200 mL), after which its color became brownish. The addition of water was performed in an ice bath to maintain the temperature below 100 °C. The mixture was then stirred for 30 min, and 15 mL of 30 wt% H₂O₂ was slowly added to the mixture to reduce the residual KMnO₄, after which the color of the mixture changed to brilliant yellow. The mixture was redispersed in water and was then dialyzed for one week to remove residual salts and acids. The resulting solid was centrifuged and dried at 45 °C for 12 h.

Preparation of CdS nanospheres

In a typical synthesis,^{S2} 1.6 mmol of Cd(CH₃COO)₂·2H₂O and 40 mmol of thiourea were dissolved in 40 mL of deionized water to form a clear solution after stirring for 30 min at room temperature. The solution was then transferred into a 50 mL Teflonlined stainless-steel autoclave and maintained at 140 °C for 2 h. After cooling down to room temperature, the yellow precipitate was harvested by centrifugation, washed several times with deionized water and ethanol to remove possible remaining cations and anions, and dried at 45 °C in a vaccum.

Synthesis of CdS@MoS₂

570.0 mg of CdS was re-dispersed in 3.6 mL of water and then added into the solution containing 3.6 mL of water and 5 mL of absolute ethanol, followed by stirring for 1 h. Next, 0.0807 g of Na₂MoO₄·2H₂O was added to the above mixture and stirred to form the suspension. Besides, another solution was prepared by dissolving 0.0214 g of S

power in 2.5 mL of 85% N_2H_4 · H_2O at 50 °C by stirring, which was then dropwise injected to the first suspension. Finally, the mixture was transferred into 20 mL Teflon-lined stainless-steel autoclave and kept at 200 °C for 10 h. After cooling down to room temperature, the resultant product was separated by centrifugation, washed several times with deionized water and ethanol to remove possible remaining cations and anions, and dried at 45 °C in a vaccum.

Synthesis of rGO@MoS₂-CdS

32.0 mg of graphite oxide was dispersed in 3.6 mL of water to form a GO aqueous suspension via probe sonication (Scientz-IID, China) for 1 h, which is then added to the solution containing 3.6 mL of water and 5 mL of absolute ethanol, followed by stirring for 1 h and ultrasonication for another 2 h. Next, 0.0807 g of Na₂MoO₄·2H₂O was added to the above mixture and stirred to form the suspension. Besides, another solution was prepared by dissolving 0.0214 g of S power in 2.5 mL of 85% N₂H₄·H₂O at 50 °C by stirring, which was then dropwise injected to the first suspension. The mixture was transferred into 20 mL Teflon-lined stainless-steel autoclave and kept at 200 °C for 10 h. After cooling down to room temperature, the resultant product was separated by centrifugation, washed several times with deionized water and ethanol to remove possible remaining cations and anions, and redispersed in 125 mL water. Then 5.0 mmol of $Cd(CH_3COO)_2 \cdot 2H_2O$ and 125.0 mmol of thiourea were dissolved in the as-obtained rGO@MoS₂ aqueous suspension after stirring for 30 min at room temperature. The solution was then transferred into Teflon-lined stainless-steel autoclaves and maintained at 140 °C for 2 h. After cooling down to room temperature, the resultant product was separated by centrifugation, washed several times with deionized water and ethanol to remove possible remaining cations and anions, and dried at 45 °C in a vaccum.

Sample characterizations

Transmission electron microscopy (TEM), high-resolution TEM (HRTEM), selectedarea electron diffraction (SAED), scanning TEM (STEM) and energy dispersive spectroscopy (EDS) mapping profiles were taken on a JEOL JEM-2100F fieldemission high-resolution transmission electron microscope operated at 200 kV. Powder X-ray powder diffraction (XRD) patterns were collected on a D8 Advance Xray diffractometer with Non-monochromated Cu-Ka X-Ray. X-ray photoelectron spectra (XPS) were collected on an ESCALab 250 X-ray photoelectron spectrometer, using nonmonochromatized Al-Ka X-ray as the excitation source. The Raman measurement was carried out on a Renishaw in ViaRefles under excitation wavelength of 532 nm. UV-vis diffuse reflectance data were recorded in the spectral region of 200-800 nm with a Cary-7000 eries UV-vis-NIR spectrophotometer. Photoluminescence (PL) spectra were examined using a HITACHI F-7000 composition analyses and Cd²⁺ Spectrofluorometer. The concentration measurements were performed through a Thermo Scientific PlasmaQuad 3 inductively-coupled plasma mass spectrometry (ICP-MS).

Fig. S1 Photograph of CdS based samples coated FTO glass.

Fig. S2 SEM images of rGO-CdS@MoS₂.

Fig. S3 Detailed HRTEM images of MoS₂ in rGO-CdS@MoS₂.

Fig. S4 (a) Survey and (b) high-resolution O1s XPS spectra of rGO-CdS@MoS₂.

Fig. S5 TEM image of $rGO@MoS_2$ nanosheets.

Fig. S6 TEM images of rGO-CdS@MoS₂ nanosheets after the photocatalytic cycles.

Fig. S7 XRD patterns of rGO-CdS@MoS $_2$ nanosheets before and after the photocatalytic cycles.

Fig. S8 XPS spectra of rGO-CdS@MoS₂ before and after the photocatalytic cycles: (a) survey spectra; (b) Cd3d; (c) S2s; (d) C1s; (e) O1s and (f) Mo3d.

Fig. S9 TEM images of bare CdS after the photocatalytic cycles.

Fig. S10 TEM images of (a) 1T-MoS₂, (b) 2H-MoS₂ and (c) rGO nanosheets.

Photocatalyst	CdS : rGO (mass ratio)	CdS : MoS ₂ (mass ratio)
rGO-CdS@MoS ₂ (79 wt% CdS)	100.0 : 9.7	100.0 : 17.0
rGO-CdS@MoS ₂ (85 wt% CdS)	100.0 : 6.6	100.0 : 11.6
rGO-CdS@MoS ₂ (90 wt% CdS)	100.0 : 4.1	100.0 : 7.2
rGO-CdS@MoS ₂ (94 wt% CdS)	100.0 : 2.1	100.0 : 3.8
rGO-CdS@MoS ₂ (98 wt% CdS)	100.0 : 0.7	100.0 : 1.3
rGO-CdS	100.0 : 4.1	_
CdS@MoS ₂	—	100.0 : 7.2
rGO@MoS2-CdS	100 : 4.0	100.0 : 7.1

Table S1. Amounts of CdS, MoS₂ and rGO in the CdS based samples determined by the ICP-MS.

	Reaction conditions		Activity		
Photocatalyst	Light source	Sacrificial	(mmol	Stability	Ref.
		reagent	$g_{cat}^{-1} h^{-1}$)		
rGO-CdS-MoS ₂	Xe (300 W, λ	lactic acid	9	No significant activity	21
	> 420 nm)			loss after 25 h	
rGO-CdS-MoS ₂	Xe (300 W, λ	lactic acid	1.9		38
	> 400 nm)				
rGO-CdS-MoS ₂	UV (500 W,	lactic acid	6.8	_	49
	280-320 nm)				
rGO-CdS-MoS ₂	Xe (350 W, λ	lactic acid	2.0	No significant activity	50
	> 420 nm)			loss after 20 h	
rGO-CdS-MoS ₂	Xe (300 W, λ	lactic acid	1.6	No significant activity	51
	> 420 nm)			loss after 30 h	
rGO-CdS-MoS ₂	Xe (300 W, λ	lactic acid	7.1	_	52
	> 420 nm)				
rGO-CdS-MoS ₂	Xe (300 W, λ	lactic acid	12.8	Lower than 10%	23
	> 420 nm)			activity deterioration	
				after 20 h	
rGO-CdS-MoS ₂	Xe (350 W, λ	lactic acid	12.4	_	53
	> 420 nm)				
rGO-CdS@MoS2	Xe (300 W, λ	lactic acid	14.4	3.5% activity	*
-	> 420 nm)			deterioration after 20 h	

Table S2. Comparison of the photocatalytic performance of as-obtained rGO-CdS@MoS $_2$ in H $_2$ evolution with those of previous reported rGO-CdS-MoS $_2$ photocatalyst.

Rs Rct Rsc CPE1 CPE2								
Sample	CdS ^a	rGO-CdS	MoS ₂ @CdS	rGO@MoS2-CdS	rGO-CdS@MoS ₂			
$R_s (\Omega \text{ cm}^{-2})$	_	1.89	1.533	1.695	0.91534			
$R_{ct} \left(\Omega \text{ cm}^{-2}\right)$		45.51	55.15	38.56	25.84			
$R_{sc}\left(\Omega\ cm^{-2}\right)$	—	719.5	373.1	241.6	123.7			
CPE1-T	—	7.1011E-06	7.8127E-06	3.505E-06	8.0368E-06			
CPE1-P	—	0.84646	0.87437	0.90129	0.89072			
CPE2-T	—	0.0014943	0.0023809	0.002954	0.0064813			
CPE2-P		0.81083	0.81283	0.87282	0.88387			

Table S3. Equivalent circuit of EIS plots and values of elements in equivalent circuit

 resulted from fitting the EIS data.

^a CdS is not fitted with the equivalent circuit in Fig. 5b.

References

- S1 W. Hummers and R. Offeman, J. Am. Chem. Soc., 1958, 80, 1339.
- S2 G. Lin, J. Zheng and R. Xu, J. Phys. Chem. C, 2008, 112, 7363.