# **Supporting Information**

### The role of electronegativity on the thermoelectric performance of

### GeTe - I-V-VI<sub>2</sub> solid solutions

Nanhai Li<sup>a, b</sup>, Wenlu He<sup>a</sup>, Chengjun Li<sup>a</sup>, Guiwen Wang <sup>c</sup>, Guoyu Wang<sup>\*b</sup>, Xiaoyuan Zhou<sup>\*a, c</sup> and Xu Lu<sup>\*a</sup>

<sup>a</sup>Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, P. R. China

<sup>b</sup>Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China

<sup>c</sup>Analytical and Testing Center, Chongqing University, Chongqing 401331, P. R. China

Contact Authors: luxu@cqu.edu.cn; guoyuw@cigit.ac.cn; xiaoyuan2013@cqu.edu.cn

#### 1. Single parabolic band (SPB) model

The following equations are used to estimate the effective mass<sup>1</sup>:

$$s = -\frac{k_B}{e} \left( \frac{\left(\frac{5}{2} + \lambda\right) F_3}{\left(\frac{3}{2} + \lambda\right) F_{\frac{1}{2} + \lambda}(\eta)} - \eta \right)$$
(1)

$$n_{H} = -\frac{4\pi (2m_{d}^{*}k_{B}T)^{\frac{3}{2}}F_{1}(\eta)}{\frac{1}{2}}$$
(2)

$$r_{H} = \frac{3}{2} F_{\frac{1}{2}}(\eta) \frac{\left(\frac{3}{2} + 2\lambda\right) F_{\frac{1}{2} + 2\lambda}(\eta)}{\left(\frac{3}{2} + \lambda\right)^{2} F_{\frac{1}{2} + \lambda}(\eta)^{2}}$$
(3)

$$F_i(\eta) = \int_0^\infty \frac{x^i}{1 + exp^{[in]}(x - \eta)} dx$$
(4)

where  $\eta = E_F/k_BT$  is the reduced Fermi level, *x* is the reduced carrier energy,  $F_i(\eta)$  is the Fermi-Dirac integral,  $r_H$  is the Hall factor,  $m_d^*$  is the density of states (DOS) effective mass, *h* is the Planck constant, and  $\lambda$  is the scattering factor which depends on the energy dependence of the carrier relaxation time  $\tau$  via  $\tau = \tau_0 \xi^{\lambda}$ . When the acoustic phonon scattering or alloy scattering is dominant,  $\lambda = -1/2$ .

### **2. B factor &** zT

 $\beta$  is defined by the relation<sup>2</sup>:

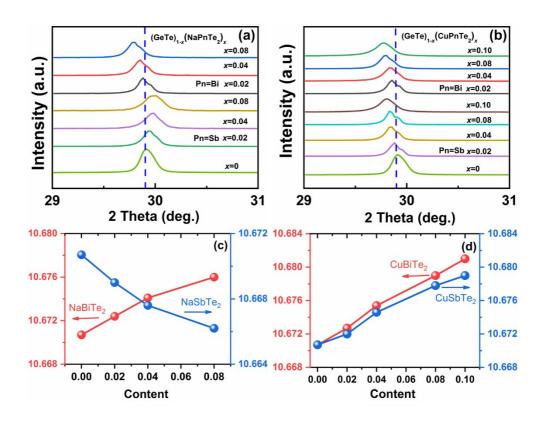
$$\beta = \left(\frac{\kappa}{e}\right)^2 \frac{\sigma_{E0}T}{\lambda_L} \tag{5}$$

where  $\kappa$  is the Boltzmann constant,  $\lambda_L$  is the lattice thermal conductivity,  $\sigma_0$  is a quantity termed as transport coefficient that depends on the carrier mobility and the effective mass according to:

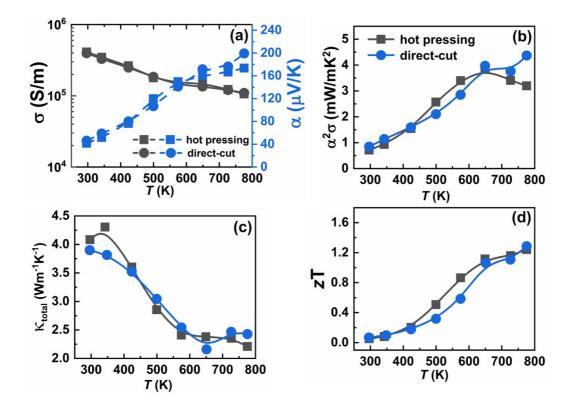
$$\sigma_{E0} = 2e\mu \left(\frac{2\pi m_d^*}{h^2}\right)^{3/2} \tag{6}$$

where  $\mu$  is the carrier mobility,  $m_d^*$  is the density of states (DOS) effective mass, h is the Planck constant.

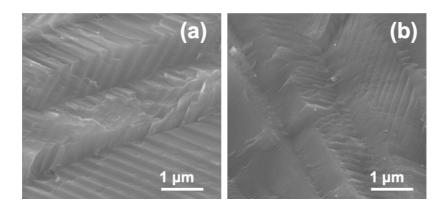
To see how the definition of  $\beta$  is justified, we can now separate the  $\eta$ -dependent terms from  $zT^3$ :


$$zT = \frac{S^2 \sigma T}{\lambda_L + \lambda_e} = \frac{S^2}{\lambda_L / \sigma T + L}$$
$$= \frac{S^2(\eta)}{\frac{\lambda_L}{T \sigma_{E0} \cdot ln^{\text{ini}}(1 + e^{\eta})} + L(\eta)}$$

$$=\frac{S^{2}(\eta)}{\frac{\left(\kappa_{B}/e\right)^{2}}{\beta\cdot\ln\left[1\right]}+L(\eta)}$$


where  $\beta$  combines all the  $\eta$ -independent material parameters, giving the definition of the dimensionless material quality factor in Eq.5. The natural unit of the Lorenz number  $(\kappa_B/e)^2$  was multiplied in the term containing  $1/\beta$  to make  $\beta$  dimensionless for convenience.

## References


- X. Liu, T. Zhu, H. Wang, L. Hu, H. Xie, G. Jiang, G. J. Snyder and X. Zhao, Advanced Energy Materials, 2013, 3, 1238-1244.
- 2. Goldsmid, H. J. Thermoelectric Refrigeration (Plenum, 1964).
- 3. S. D. Kang and G. J. Snyder, Nature Materials, 2017, 16, 252-257.



**Figure S1.** (a-b) The magnified area of the powder X-ray diffraction pattern of  $(GeTe)_{1-x}(NaPnTe_2)_x$  and  $(GeTe)_{1-x}(CuPnTe_2)_x$  in the angles  $(2^{\theta})$  from  $2^{9^{\circ}}$  to  $3^{1^{\circ}}$ . (c-d) The lattice constants (c-axis) of  $(GeTe)_{1-x}(NaPnTe_2)_x$  and  $(GeTe)_{1-x}(CuPnTe_2)_x$ .



**Figure S2.** The comparison of the thermal and electrical performance data of  $(GeTe)_{0.98}(NaBiTe_2)_{0.02}$  after hot pressing (powder was consolidated to a disk by a direct-current-induced hot pressing at about 873 K for 40 min and under the pressure of ~50 MPa) and direct cutting.



**Figure S3**. SEM image of fresh fracture surface morphology of  $(GeTe)_{0.98}(NaBiTe_2)_{0.02}$  after (a) direct cutting and (b) hot pressing.