Supplementary Information

Novel hydrogen chemisorption properties of amorphous ceramic compounds consisting of *p*-block elements: exploring Lewis acid-base Al-N pair site formed *in-situ* within polymer-derived silicon-aluminumnitrogen-based system

Shotaro Tada,^a Norifumi Asakuma,^a Shiori Ando,^a Toru Asaka,^a Yusuke Daiko,^a Sawao Honda,^a Masaaki Haneda,^a Samuel Bernard,^b Ralf Riedel^c and Yuji Iwamoto^{*a}

^aDepartment of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
^bUniversity of Limoges, CNRS, IRCER, UMR 7315, F-87000, Limoges, France
^cInstitut für Materialwissenschaft, Technische Universität Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany

* Corresponding author: Yuji Iwamoto E-mail: <u>iwamoto.yuji@nitech.ac.jp</u> Tel/Fax: +81-52-735-5276

Keywords:

Polymer-Derived Ceramics (PDCs) / amorphous SiAlN / Molecular hydrogen (H₂) chemisorption / CO₂ hydrogenation reactions / Lewis acid-base pair site

In this study, aluminum (Al)-modified polysilazane, as a single-source precursor, was first synthesized by chemical modification of a commercially available Durazane[®] 1800, poly(vinylmethyl-co-methyl)silazane (PSZ, silicon nitride precursor) with alane N,N-dimethylethylamine (EtNMe₂·AlH₃—ADMEA). The reaction of PSZ and ADMEA relies on both dehydrocoupling and hydroalumination reactions (Fig. S1).

Fig. S1 Schematic representation of the synthesis of Al-modified PSZ through PDCs route.

The chemical modification performed in this study was monitored by attenuated total reflection flourier transform infra-red (ATR-FTIR) spectroscopy using FTIR spectrometer (FT/IR-4200IF, JASCO Corporation, Tokyo, Japan) with attachment of ATR equipment (ATR PRO 550S-S/570S-H, JASCO Corporation, Tokyo, Japan) at a resolution of 4 cm⁻¹. The typical ATR-FTIR spectra of Al-PSZ samples with different Al/Si atomic ratios shows in Fig. S2. The FT-IR spectra shows that the intensity of the bands corresponding to the C_{sp2}–H band at 3048 and 1402 cm⁻¹ slightly reduces. In parallel, the intensity of the bands assigned to N–H bands at 3381 and 1173 cm⁻¹ reduces more significantly. These changes indicate both hydroalumination and dehydrocoupling reaction occur in parallel. FTIR (ATR/cm⁻¹): ν (N–H) = 3350 (m); ν (C_{sp2}–H) = 3048 (w); ν (C_{sp3}–H) = 2950 (m), 2900 (vw); ν (Si–H) = 2130 (vs); ν (Al–H) = 1820 (m); ν (C=C) = 1596 (vw); δ (C–C, vinyl) = 1402 (w); δ (Si–CH₃) = 1250 (vs); δ (Si₂N–H) = 1175 (vs); δ (Si–N) = 840–1020 (vs); and δ (Si–C) = 700–850 (m).

Fig. S2 ATR-FT-IR spectra for as-received PSZ and Al-modified PSZ.

In this study, Al-PSZ was pyrolyzed at 1000 °C under flowing ammonia (NH₃) to generate a silicon-aluminum-nitrogen-based ceramic. Powder X-ray diffraction (XRD) patterns of the pyrolyzed samples were measured on a flat sample stage, using Ni-filtered CuK α radiation (Model X'pert, Philips, Amsterdam, The Netherlands). The XRD patterns of as-pyrolyzed samples are shown in Fig. S3. The XRD pattern of as-pyrolyzed SiAlN (SiAlN) is X-ray amorphous and does not show any difference with the Al-free sample, *i.e.*, the as-pyrolyzed silicon nitride (SiN) sample, prepared through the same pyrolysis procedure.

Fig. S3 Typical XRD patterns of samples after pyrolysis at 1000 °C under flowing NH₃.

Textural properties of pyrolyzed samples was evaluated by measuring N₂ adsorption and desorption isotherms at -196 °C under the relative pressures ranging from 0 to 0.99 (Model Belsorp Max, BEL Japan Inc., Osaka, Japan). The pore size distribution was analyzed by MP¹ and BJH² methods. The results are shown in Fig. S4. The **SiAIN** sample at -196 °C exhibited a type I+IV isotherms according to the IUPAC classifications^{3,4}, while the **SiN** sample showed

no interaction with N₂ (Fig. S4a). The Brunauer-Emmett-Teller (BET) surface area ($S_{BET}^{N_2}$) of the **SiAIN** sample has been measured to be 165 m² g⁻¹. The pore size distribution curve (PSD) in the micropore range characterized by the MP meshod¹ exhibited a peak centered at 1.2 nm (Fig. S4b), whereas there was no distinct peak in the mesopore range by the BJH plot² although we can identify the existence of a certain porosity with a pore size range of approximately 2 to 4 nm (Fig. S4c). In addition, Fig. S5 shows a N₂ adsorption and desorption isotherm of the

SiAIN sample pyrolyzed at 700 °C which has low porosity due to the collapse and close of the pore.

Fig. S4 (a) N_2 adsorption-desorption isotherms at -196 °C for the polymer-derived amorphous SiAIN and SiN samples, and pore size distribution curves of the SiAIN sample characterized by (b) MP plot and (c) BJH plot.

Fig. S5 Reference data of N_2 adsorption and desorption isotherms at -196 °C. Polymerderived SiAlN pyrolyzed (a) at 1000 °C under N_2 and (b) at 700 °C under NH₃.

Thermalgravimetric (TG) analysis for the polymer-to-ceramic conversion was performed under flowing mixture of NH₃ and N₂ (60:40 in flow ratio) (Model TGA 92 16.18 Setaram, Inc., Newark, CA, USA) or He (Model JMS-Q1500GC, JEOL Ltd., Tokyo, Japan). The TGcurves under the mixed NH₃-N₂ gas flow were monitored up to 1000 °C with a heating rate of 5 °C min⁻¹ (Fig. S6), while those under He flow were monitored up to 1000 °C with a heating rate of 10 °C min⁻¹ (Fig. S7).

A contentious weight loss above 700 °C is identified during the conversion of the Almodified PSZ leading to the **SiAIN** sample whereas no weight loss is identified above 800 °C during the conversion of PSZ into the SiN sample (Fig. S6), in contrast, such the difference

above 800 $^{\circ}$ C is not observed when the conversions of Al-modified PSZ and PSZ were monitored under He (Fig. S7).

Fig. S6 TG-curves of PSZ and Al-PSZ under flowing NH₃-N₂ (60:40 in flow ratio) mixed gas.

Fig. S7 TG-curves of PSZ and Al-PSZ under flowing He.

To investigate the chemical bonding-state of the **SiAIN** sample, X-ray photoelectron spectroscopic (XPS) measurements were performed using X-ray Photoelectron Spectrometer (PHI 5000, ULVAC-PHI, Inc., Japan) with an Al K*a* X-ray source operated at 14 kV and 14 mA. An alignment on the C 1s peak was performed before survey scans. The wide scan spectrum of **SiAIN** sample is shown in Fig. S8. Besides the intense lines of the constituent elements (N 1s, Si 2p and Al 2p) and unavoidable carbon contaminant, strong line of O 1s is observed. This indicates a certain amount of oxygen is present at the surface of the **SiAIN** sample. The summary of XPS characterization for amorphous SiAIN sample lists in Table S2.

Fig. S8 Wide scan x-ray photoelectron spectrum of polymer-derived SiAlN.

Table S1 Summary of XPS characterization for amorphous SiAlN sample.(a) Al 2p and (b) Si 2p.

(a)	Band (Al 2p)	Binding energy (eV)	Area (%)
-	AI-N	73.5	78.0
_	AI-O	74.7	22.0
•			
(b)	Band (Si 2p)	Binding energy (eV)	Area (%)
•	Si-N	73.5	98.8
	Si-O	74.7	1.2

To study the H₂ adsorption and desorption properties, temperature-programmed-desorption of hydrogen (H₂-TPD) was performed using a catalyst analyzer (Model BELCAT-A, MicrotracBEL Corp., Osaka, Japan) fixed with a quadrupole mass spectrometer (Model BELMASS, MicrotracBEL Corp., Osaka, Japan). Prior to the measurement, the sample was maintained under Ar at 800 °C and subsequently exposed to H₂ at specific temperatures ($T_{H2} = 100, 150 \text{ °C}$) for 5 min. H₂-TPD profiles of the reference samples are shown in Fig. S9. The amorphous silicon nitride which is derived from the as-received PSZ, commercial crystalline AlN and HY zeolite samples show no desorption peak under the measurement condition ($T_{H2} = 150 \text{ °C}$), while the H₂-TPD profiles of the $H_2PTSIAIN$ sample exhibits a single peak at approximately 100 to 350 °C under the same condition ($T_{H2} = 150 \text{ °C}$). As referential data, the volumetric amount of hydrogen desorption briefly estimated for the $H_2PTSIAIN$ sample is approximately 1.1 mL g⁻¹ which was calculated based on the relative ratio of the peak area of H2-TPD curve, $T_{H2} = 150 \text{ °C}$ in Fig. S9, to that of well-known metal hydride, MgH₂ measured at our lab.

Fig. S9 Comparison of H₂-TPD profiles of **PTSiAIN** sample with those of reference samples of **SiN** sample, commercially available crystalline AIN and zeolite samples.

References

- R. S. Mikhail, S. Brunauer and E. E. Bodor, Investigations of a complete pore structure analysis. I. Analysis of micropores, *J. Colloid Interface Sci.*, 1968, 26, 45–53.
- E. P. Barrett, L. G. Joyner and P. P. Halenda, The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms, *J. Am. Chem. Soc.*, 1951, **73**, 373–380.
- K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol and T. Siemieniewska, Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity, *Pure Appl. Chem.*, 1985, 57, 603–619.
- S. Lowell, J. E. Shields, M. A. Thomas and M. Thommes, Springer, Dordrecht, 2004, pp. 129–156.