Supporting Information

Influence of the Stoichiometry of tin-based 2D/3D Perovskite active layer on Solar Cells performances

Shuyan Shao^{*,a}, Maykel Nijenhuis^a, Jingjin Dong^b, Simon Kahmann^a, Gert H. ten Brink^c, Giuseppe Portale^b, Maria Antonietta Loi^{*,a}

Figure S1. XRD patterns of (a) a PEA_{0.08}FA_{0.6}SnI₃film with hexagonal SnI₂ (β -SnI₂) peaks at 12.7°, 25.6°, and 38.8°, (b) a PEA_{0.08}FA_{0.7}SnI₃ film with β -SnI₂ peaks at 12.7° and 25.6° and (c) a PEA_{0.08}FA_{0.8}SnI₃ film with β -SnI₂ peaks at 12.7° and 25.6 as well ^[1].

Figure S2. GIWAXS patterns of $PEA_{0.08}FA_{(x)}SnI_3$ films. The images were recorded using an incident angle of 0.25°.

Figure S3. The line-cut data in (a) in-plane (q_z) and (b) out-of-plane (q_y) of the GIWAXS images of the PEA_{0.08}FA_xSnI₃ films with X-ray incident angle of 0.25°, respectively.

Figure S4. SEM images of the $PEA_{0.08}FA_xSnI_3$ films: (a) x=0.7, (b) x=0.85, (c) x=0.92, (d) x=1.0, (e) x=1.1, (f) the magnified image of x=1.1 sample.

Figure S5. Normalized PL spectra of PEA_{0.08}FA_(x)SnI₃ films.

Figure S6. Absorbance of $PEA_{0.08}FA_{(x)}SnI_3$ films (a) with an incident light wavelength from 350 nm to 1000 nm and (b) from 700 nm to 900 nm. Note: the absorbance spectra in the short wavelength region (<600 nm) are saturated.

Figure S7. Mott-Schottky analysis of perovskite solar cells of different stoichiometry. (a-h) C^{-2} as a function of bias voltage. (i) carrier concentration as deriveved from Mott-Schottky analysis for the different samples.

Figure S8. Statistics for V_{OC} , J_{SC} , FF and PCE of devices with an active area of 0.04 cm². Note that: for the 0.70 M composition 8 samples were measured, for the 0.95 M composition 9 samples, and for the 1.20 M composition also 9 samples were measured. The graph includes the values from Table 1.

Figure S9. Statistics for V_{OC} , J_{SC} , FF and PCE of devices with an active area of 0.09 cm². Note that: for the 0.70 M composition 8 samples were measured, for the 0.95 M composition 9 samples, and also for the 1.20 M composition 9 samples were measured.

Figure S10. Statistics for V_{OC} , J_{SC} , FF and PCE of devices using different 2D/3D films with an active area of 0.25 cm². Note that: for the 0.70 M composition 8 samples were measured, for the 0.95 M composition 9 samples, and also for the 1.20 M composition 9 samples were measured.

Figure S11. IPCE measurements of ITO/PEDOT:PSS/ PEA_{0.08}FA_(x)SnI₃/C60/BCP/Al devices.

Figure 12. Variation of the $V_{OC_{2}}$ J_{SC_{2} FF and PCE of devices using different 2D/3D films vs time they have been exposed to air.

References:

[1] V. S. Kostko, O. V Kostko, G. I. Makovetskii and K. I. Yanushkevich, *Phys. status solidi*, 2002, **229**, 1349–1352.