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Comparison of laser sintering and hotplate sintering 

 

Figure S1. Digital images of AgNP-coated fibers sintered using a 532 nm laser and a hotplate at 

~150 °C. 

 

EDS elemental maps of the AgNP/AgNW/Au-coated fiber 

 

Figure S2. Top-view EDS elemental maps of the AgNP/AgNW/Au-coated fiber. 
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Comparison of AgNP and AgNP/AgNW layers  

 

Figure S3. Top-view SEM images of (a) a AgNP layer and (b) a AgNP/AgNW layer near cracks. 

 

Electrochemical characteristics of G-SCs and MG-SCs 

 

Figure S4. Cyclic voltammetry (CV) , galvanostatic charge/discharge (CC) curve, and 

electrochemical impedance spectroscopy (EIS) for (a, b, c) G-SCs and (c, d, e) MG-SCs, 

respectively. 
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EDX and XPS of MnO2  

Figure S5a shows the energy-dispersive X-ray spectroscopy (EDX; Emax Energy EX-250, 

Horiba) result of an MGM fiber electrode. The EDX spectrum confirms the existence of Mn and 

O in the electrode. Figure S5b shows the X-ray photoelectron spectroscopy (XPS; K-alpha Plus, 

Thermo Fisher Scientific) spectrum collected by the survey scan of a MnO2 layer that was 

prepared on a large-area graphene film by using the same electrodeposition method. Figure S5c 

shows the XPS spectrum of Mn 2p that displays a peak separation of 11.6 eV. 

 

 

Figure S5. (a) EDX spectrum of an MGM electrode fiber. (b) Survey XPS spectrum and (c) XPS 

spectrum of Mn 2p that were obtained from a MnO2 layer that was electrodeposited on a graphene 

film.  
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Electrochemical characteristics of MGM-SC obtained via 3-electrode 

measurements 

 

Figure S6. (a) CV , (b) CC , (c) EIS , and (d) areal capacitances at a range of current densities for 

a single MGM fiber (length: 3.5 cm). 

 

Cyclic charge/discharge testing for MGM-SC 

 

Figure S7. Capacitance retention for 10000 cycles of charge/discharge for MGM-SC. 
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Ragone plot 

 

Figure S8. Area-specific Ragone plot of the MGM-SC and other reported fiber SCs. For 

comparison the data from ref. 1, 2, 3, 4, 5, 6 were reproduced by using Origin®  software. 

The areal energy density (EA) and power density (PA) in this work and ref. 4 and 6 were 

calculated by: 

𝐶𝑐𝑒𝑙𝑙 =
𝐼×𝑡

(𝑉−𝐼𝑅𝑑𝑟𝑜𝑝)
   (F)    (1) 

EA =
1

2
×

𝐶𝑐𝑒𝑙𝑙

2𝐴
×

V2

3600
  (Wh/cm2)   (2) 

PA =
EA×3600

t
      (W/cm2)   (3) 

, where I is the discharge current (A), t is the discharge time (s), V is the operation voltage (V), 

IRdrop is the voltage drop at the beginning of the discharge curve (V), and A is the surface area 

of a single fiber electrode (cm2).7, 8 It should be noted that for ref. 2, the CA and EA values were 

calculated by 

CA =
I

A
×

t

(V−IRdrop)
       (4) 

EA =
1

2
× 𝐶𝐴 ×

V2

3600
 .      (5) 
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Stress-strain curve of the PVDF fiber 

 

Figure S9. Stress-strain curve of the PVDF fiber. 

 

Droplet-coating method 

The AgNPs/AgNWs coated fiber was prepared by using the droplet-coating method. A Ag 

ink droplet, which was suspended to the syringe needle end, wetted part of the PVDF fiber, 

enveloping its entire cross-section. The syringe was then translated at a speed of 5 mm/s using a 

motorized linear stage, so that the droplet swept the entire surface of the fiber. This sweeping was 

repeated 10 times.  

 

 

Figure S10. (a) Schematic of the droplet-coating method. (b) Digital image of the droplet-coating 

setup. 
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Bendability comparison 

Table S1. Bendability comparison of fiber SCs. 

Type Material Diameter (m) 
Bending angle 

(o) 

Bending 

radius 

(cm) 

Bending 

times (n) 

Retention 

(%) 
ref 

All-in-one 

Monofilament 

PVDF fiber, thin 

metal layer, Gr, 

MnO2 

SC device fiber: 
320–340 

180 1.5–0.25 - 92.5 
This 
work 

150 0.75 3000 94 

GO fiber, rGO 
SC device fiber: 

50 
- 0.75 160 ~80 9 

Parallel 

Au coated 

polymer fiber + 
ink 

Single electrode 

fiber: 200 
180, 360 - - 95 10 

Gr based 
functional fiber 

Single electrode 
fiber: ~50 

0–180 - - 120 
8 

180 - 1000 90 

Cu wire /rGO/ 
MnO2 

Single electrode 
fiber: 150 

60 - 5000 80 11 

CNT fiber/CNTs/ 

PANI 

Single electrode 

fiber: 55 

0–180 - - 95 
12 

180 - 500 99.8 

rGO on Au wire 
Single electrode 

fiber: 130 

0-120,  

S shape 
- - 99 

13 

90 - 1000 90 

Hollow Gr/ 
conducting 

polymer fiber 

Single electrode 

fiber: 112 

0–180 - - 105 
14 

180 - 500 95 

MnO2/porous Ni 
wire 

Single electrode 
fiber: 300 

0-180 - - 90 15 

All-carbon hybrid 

fibers 

Single electrode 

fiber: 30 
120 - 1000 96 

16 
Single electrode 

fiber: 236 
120 - 1000 89 

Twisted 

MWCNT/ 

OMC fiber 

Single electrode 

fiber: 150 
180 - 1000 90 5 

rGO fiber 
SC device fiber: 

500 

0–360, intertwined - - 90 
17 

180 - 1000 90  

SWCNTs/ 

PAniNW/gel yarn 

Single electrode 

fiber: ~50 
0–180 - - 95 4 

GF@PEDOT 
Single electrode 

fiber: 90 

0–250 - - 90 
18 

180 - 300 80 

Coaxial GF/Gr sheath 
SC device fiber: 

~190 
180 - 100 92 19 

Gr: graphene, GF: graphene fiber, rGO: reduced graphene oxide, CNT: carbon nanotube, PANI: polyaniline, MWCNT: multi-walled carbon 

nanotube, SWCNT: single-walled carbon nanotube, PaniNW: polyaniline nanowires, OMC: ordered mesoporous carbon, PEDOT: Poly(3,4-

ethylenedioxythiophene). 
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Specific capacitance comparison 

Table S2. Comparison of specific capacitances of fiber SCs. 

Type Material Electrolyte 
CL 

(mF/cm) 

CA 

(mF/cm2) 
Ref 

 

Monofilament 
 

PVDF fiber, Ag/Au/Gr/MnO2 PVA-Na2SO4 0.51 at 0.1 mA/cm2 
12.3 at 0.1 mA/cm2 * 

9.5 at 2 mA/cm2 * 

This 

work 

GO fiber, rGO 

BMIMBF4 - 1.2 at 80 A/cm2 

9 

0.1 M NaClO4 

in CH3CN 
- 0.24 at 200 A/cm2 

Parallel 

Gr based functional fiber PVA-H2SO4 - 74.25 at 40 mV/s * 8 

Cu/rGO/MnO2 PVA-KOH - 140 at 0.1 mA/cm2 11 

CNT fiber/CNT/PANI PVA-H3PO4 - 67.31 at 0.5 mA/cm2 12 

MnO2/porous Ni wire PVA-KOH - 847.22  at 0.41 mA/cm2 15 

Twisted 

GF/MnO2 PVA-H2SO4 0.143 at 100 mV/s 9.1–9.6 at 2 A 20 

Gr/conducting polymer 

microfibers 
PVA-H2SO4 

0.58 

at 0.53 mA/cm2 
15.39 at 0.53 mA/cm2 18 

SWCNTs/ 

PAniNW/gel yarn 
PVA-H2SO4 - 3.065 at 0.2 A/g * 4 

Coaxial 

Stainless steel, ink, AC PVA-H3PO4 0.1 at 40 A 3.18 40 A 21 

Nanoporous Au wire, MnO2 PVA-LiCl - 
12 at 0.3 mA/cm2 

6 at 2 mA/cm2 
22 

Gr: graphene, GF: graphene fiber, GO: graphene oxide, rGO: reduced graphene oxide, CNT: carbon nanotube, SWCNT: single-

walled carbon nanotube, PaniNW: polyaniline nanowires, NW: nanowire.  

* The specific capacitance values reported in this paper, ref. 8 and ref. 4 were calculated 

from the equation: 

CX = 2
I

X
×

t

(V−IRdrop)
     (6) 

, where I is the discharge current (A), t is the discharge time (s), V is the operation voltage (V), 

and IRdrop is the voltage drop at the beginning of the discharge curve (V). X can be the effective 

surface area (A) or length (L) of a single electrode. However, other studies in the table reported 

the specific capacitance value from the following equation:  

CX =
I

X
×

t

(V−IRdrop)
 .      (7) 

Therefore, the specific capacitance value reported in the marked papers has been divided by a 

factor of 2 in this table for fair comparison.  
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