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Fig. S1 Withered platanus leafs in Wutong West Road of Xi’an Jiaotong University. 
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Fig. S2 digital photographs of (a) pristine GF and (b) SPHC modified GF. 

 

 

Fig. S3 N2 adsorption-desorption isotherms of SPHC-600, SPHC-800 and SPHC-1000. 

As shown in Fig. S3, a strong adsorption in low pressure region (P/P0=0-0.1) and an 

obvious hysteresis loop in medium pressure region (P/P0=0.4-0.8) for the SPHC-X are 

respectively attributed to the appearance of the mesopore and micropore. Similar to some 

biomass-derived carbons[18, 19], it is found that the N2 adsorption-desorption isotherms of SPHC-

X are not closed, which may be caused by the destruction of some pore structures in the N2 

adsorption-desorption process. 
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Fig. S4 XPS spectra of the SPHC-1000. 
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Fig. S5 Chemical composition ratio of oxygen and carbon atoms for SPHC-600, SPHC-800 

and SPHC-1000. 
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Fig. S6 Chemical composition ratio of SPHC-600, SPHC-800 and SPHC-1000 from C1s 

spectra. 
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Fig. S7 (a) XPS spectra of the SPHC-600; XPS analysis and its fitting from high resolution (b) 

C1s peak, (c) O1s peak for SPHC-600. 
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Fig. S8 (a) XPS spectra of the SPHC-800; XPS analysis and its fitting from high resolution (b) 

C1s peak, (c) O1s peak for SPHC-800. 
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Fig. S9 Energy efficiency of VFBs with pristine GF and SPHC electrodes at different current 

densities. 
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Fig. S10 Performance comparison of VFBs with SPHC electrode, and the VFB performance in 

the open literature. 

 

Table. S1 Experimantal parameters from the open literature. 
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1 Wood-derived carbon 9 cm2 N115 1.5M 53.4 mL min-1 

2 

Lignin-derived 

carbon 

5.0625 

cm2 

N116 1.6M 30 mL min-1 

3 CNF-CNT/GF 5 cm2 N117 2.0M 20 mL min-1 

4 

Cocoon-derived 

carbon 

4 cm2 212 1M 46 mL min-1 

5 Corn-derived carbon 25 cm2 N115 2.0M 60 mL min-1 

6 NiCoO2/GF 4 cm2 GN-114C 1M 20 mL min-1 

7 rGO/GF 25 cm2 N117 3.0M 30 mL min-1 

8 EMIM-coated GF 4 cm2 N115 1.6M 20 mL min-1 

9 Nb-WO3/GF 10 cm2 N115 2.0M 20 mL min-1 

10 TiNb2O7-rGO/GF - - 0.5M - 

11 P-O-doped GF 25 cm2 ACS 1.6m 30 mL min-1 

12 P-F-doped GF 12 cm2 N115 1.5M 20 mL min-1 

13 ZrO2/GF 4 cm2 N211 1.1M - 

14 

Dopamine-coated 

GF 

4 cm2 N212 1M 46 mL min-1 

15 FeOOH-actived GF 4 cm2 N115 0.75M - 
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Fig. S11 Charge-discharge curves for ZBFBs with SPHC electrode. 

 

 

Fig. S12 Capacities during cycling test for VFBs with SPHC at 200 mA cm-2. 
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Fig. S13 (a) Efficiencies and (b) capacities during cycling test for ZBFBs with SPHC at 80 mA 

cm-2. 

 

 

Fig. S14 digital photographs of SPHC-GF electrodes (a) before and after cycling charge-

discharge test. 

 

Computational method 

Two kinds of porous computational domains in flow battery were investigated by 

numerical method. Porous materials in different regions were illustrated in Fig. S14. The 

simulation was carried at the electrode scale and catalyst scale, respectively. First, simulate the 

flow of the porous medium that fits the flow channel to obtain the flow velocity in the porous 

medium. Second, further study the flow in secondary pores in porous media. The basic design 
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parameters and operation conditions are shown in Table 1. 

1.  Assumptions  

(1) The flow battery operates in steady state 

(2) Flow in all areas is considered as laminar flow due to the low velocity 

(3) The porous domain is considered to be homogeneous. 

2. Conservation equations 

The Flows in channel was described by Naiver-Stokes equation: 

𝜌(�⃑� ⋅ ∇)�⃑� = ∇ ⋅ [−𝑝𝐼 + 𝜇(∇�⃑� + (∇�⃑� )𝑇)] 

𝜌∇ ⋅ �⃑� = 0 

where ρ, μ, u are density, viscosity and velocity respectively 

For the flow in porous domain, Naiver-Stokes equation is replaced by the Brinkman 

equation which takes into account the porosity correction. 

1

𝜖
𝜌(u⃑ ⋅ ∇)�⃑� 

1

𝜖
 = ∇ ⋅ [−𝑝𝐼 +

𝜇

𝜖
(∇�⃑� + (∇�⃑� )𝑇)] −

𝜇

𝑘
�⃑�  

where ϵ is porosity and k is permeability. 

k0 is known at porosity ϵ0. When the porosity changes to ϵ, the permeability can be 

known from the following equation: 

k = k0

(1 − 𝜖0)
2

𝜖0
3

𝜖3

(1 − 𝜖)2
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Fig. S15 Computational domains of (a) electrode under flow channel and (b) sandwich-like 

porous structure. 

Table S2 Modeling parameters related to electrode and electrolyte properties. 

Parameter Symbols Value Ref. 

Electrolyte flow rate Qin 46ml min−1 Experiment 

Graphite porosity ϵf 0.9 Experiment 

Secondary porosity ϵs 0.5 Experiment 

Outlet pressure Pout 1 atm Experiment 

Original fluid permeability k0 2 ∗ 10−10 𝑚2 [16] 

Original porosity ϵ0 0.6 [16] 

Fluid density ρ 1400 kg m−3 [17] 

Fluid Viscosity μ 0.0044 Pa s [17] 
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