## Supplementary information

## WC and Cobalt nanoparticles embedded nitrogen-doped carbon 3D nanocage derived from $H_3PW_{12}O_{40}@ZIF-67$ for photocatalytic nitrogen fixation

Libo Wang, Qiu Zhang, Tingting Wei, Fengyan Li,\* Zhixia Sun, Lin Xu\*

**Materials.** 2-methylimidazole and para-(dimethy-lamino) benzaldehyde were purchased from Aladdin.  $Co(NO_3)_2 \cdot 6H_2O$ ,  $H_3PW_{12}O_{40}$ , sodium citrate, salicylic acid, sodium nitrosoferricyanide, NaClO, were acquired from Sinopharm Chemical Reagent. All the reagents were used without further purification.

**Characterization.** The composition of the synthetic samples were analyzed by X-ray diffraction (XRD) equipment (Siemens, D5005) from 15 to 80 ° under Cu K $\alpha$  radiation at applied current 100mA and accelerating voltage 30kV, diffraction scan rate used 2 °·min<sup>-1</sup>. The Fourier transform infrared (FT-IR) spectrum was testing using Nicolet Magna 560 FT-IR Spectrometer. Scanning electron microscope was measured on a Hitachi SU-8000 FE-SEM to determine the surface morphology of sample, the composition also analyzed by energy dispersion X-ray spectroscopy (EDX). The internal morphology of samples were detected utilized Transmission electron microscopy (TEM) instrument (JEM-2100 PLUS). The chemical states and elemental compositions were collected through X-ray photoelectron spectrometer (XPS, Model: USWHA150) under monochromatic Al K $\alpha$  radiation excitation. BELSORPmax device was applied to perceive BET surface area and pore size distribution . Raman spectra were recorded on a Renishaw Raman spectrometer system. The electrochemical measurements were measured in a typical three-electrode system with a Pt foil as the counter electrode and Ag/AgCl as the reference electrode utilize CHI661D Electrochemical Workstation. Continous Flow Analytical System (CFA, Modle: Futura V3) was used to trace NH<sub>3</sub> and NH<sub>4</sub><sup>+</sup>. The working electrodes were established by Co/NGC and WC-Co/NGC samples, all measurement were took place in a 0.5 M solution of Na<sub>2</sub>SO<sub>4</sub> electrolyte with test area of 1 cm<sup>2</sup>.



Fig. S1 FT-IR spectra of (a)  $PW_{12}$  (b) ZiF-67 (c)  $PW_{12}@ZIF-67-1$  (d)  $PW_{12}@ZIF-67-2$  (e)  $PW_{12}@ZIF-67-3$ 



Fig. S2 SEM images of (a) ZiF-67, (b)  $PW_{12}@ZIF-67-1$ , (c)  $PW_{12}@ZIF-67-2$  and (d)  $PW_{12}@ZIF-67-3$ .



Fig. S3 SEM images of (a)  $PW_{12}/ZIF-67-1$ , (b)  $PW_{12}/ZIF-67-2$  and (c)  $PW_{12}/ZIF-67-3$ .



Fig. S4 High-resolution TEM images of WC-Co/NGC-2.



Fig. S5 XPS survey spectra of Co/NGC and WC-Co/NGC-2.



Fig. S6 UV-vis diffuse reflectance spectra of Co/NGC and WC-Co/NGC-2.



Fig. S7 Mott-Schottky curves of (a) Co/NGC, (b) WC-Co/NGC-1 and (c) WC-Co/NGC-3.



Fig. S8 NH<sub>3</sub> formation rate of WC-Co/NGC-2 in the atmospheres of N<sub>2</sub> without light and Ar under visible light.



Fig. S9 XRD pattern of WC-Co/NGC-2 after the photocatalytic experiment.



Fig. S10 SEM image of WC-Co/NGC-2 after the photocatalytic experiment.

| Table S1 | Analysis | results | of the | molar | percentage | of W | element in | WC-Co/NGC-X | obtained by |
|----------|----------|---------|--------|-------|------------|------|------------|-------------|-------------|
| EDS.     |          |         |        |       |            |      |            |             |             |

| Catalyst    | Molar percentage of W in compounds (mol %) |  |  |
|-------------|--------------------------------------------|--|--|
| WC-Co/NGC-1 | 1.34                                       |  |  |
| WC-Co/NGC-2 | 2.34                                       |  |  |
| WC-Co/NGC-3 | 3.03                                       |  |  |

**Table S2** Analysis results of the molar ratio of Co and W elements in WC-Co/NGC-X obtained by EDS and ICP.

| Catalyst    | Molar ratio of Co and W (mol %) |                 |  |  |  |  |
|-------------|---------------------------------|-----------------|--|--|--|--|
| Catalyst    | EDS                             | ICP             |  |  |  |  |
| WC-Co/NGC-1 | 89.15 and 10.85                 | 89.55 and 10.45 |  |  |  |  |
| WC-Co/NGC-2 | 86.29 and 13.71                 | 85.73 and 14.27 |  |  |  |  |
| WC-Co/NGC-3 | 80.22 and 19.78                 | 78.57 and 21.43 |  |  |  |  |

**Table S3** The calculated ammonia production rates depended on different detection methods.

|             | Ammonia production rate (µmol g <sup>-1</sup> h <sup>-1</sup> ) |                   |      |  |  |  |
|-------------|-----------------------------------------------------------------|-------------------|------|--|--|--|
| Catalyst    | Indiophenol blue                                                | Continous         | Flow |  |  |  |
|             |                                                                 | Analytical System |      |  |  |  |
| WC-Co/NGC-2 | 142                                                             | 127               |      |  |  |  |