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1 Chemicals 

2 The chemicals used in this work were as follows: hexadecyl trimethyl ammonium 

3 bromide (Alfa Aesar Co., Ltd.; purity ≥ 98%), tetraethoxysilane (Alfa Aesar Co., Ltd.; 

4 purity ≥ 98%), sodium hydroxide (Tianjin Bei Chen Fang Zheng Reagent Factory; 

5 purity ≥ 96.0%), cobalt nitrate hexahydrate (Alfa Aesar Co., Ltd.; purity ≥ 97.7%), 

6 nitric acid, magnesium chloride hexahydrate (Tianjin Fuchen Chemical Reagent, AR, 

7 purity ≥ 98.0%), sodium sulfite (Tianjin Guangfu Technology, AR, purity ≥ 97.0%), 

8 barium chloride (Tianjin Bei Chen Fang Zheng Reagent, AR, purity ≥ 99.5%), sodium 

9 chloride (Tianjin Bei Chen Fang Zheng Reagent, AR, purity ≥ 99.5%), hydrochloric 

10 acid (Tianjin Beilian Chemical, AR, purity ≥ 36.0%), glycerol (Tianjin Bei Chen Fang 

11 Zheng Reagent, AR, purity ≥ 99.0%), and glacial acetic acid (Tianjin Fuchen 

12 Chemical Reagent, AR, purity ≥ 99.5%). Biochar in particle size 300~450µm was 

13 prepared by microwave synthesis method with maple wood as raw material.
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1 The surface energy of CoO and Co2O3 for different facets surface are computed by the 

2 following equation 1,2. And (111) and (001) facets surface are the thermodynamically 

3 preferred morphology for CoO and Co2O3, respectively, thus being chosen for DFT 

4 calculation in this work to compare the catalytic performance of Co(II) and Co(III) in 

5 sulfite oxidation.

6                                            Eq.S1
𝐸𝑠𝑢𝑟𝑓𝑎𝑐𝑒=

𝐸𝑠𝑙𝑎𝑏 ‒ 𝑛𝐸𝑏𝑢𝑙𝑘
2𝐴

7 Where Eslab is the total energy of the slab, Ebulk is the total energy of the bulk per unit 

8 cell, n is the number of bulk unit cells contained in the slab, and A is the surface area 

9 of each side of the slab, the 1/2 factor is used to obtain the average value of the 

10 surface energies of the top and bottom of the slab.
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1 Free energy from DFT calculations

2 The relative free energies (∆G) were calculated as below.

3                      Eq.S2∆G = ∆E + ∆EZPE - T∆S

4 Where  is the energy difference obtained by DFT calculations. ∆EZPE and ∆S are the ∆𝐸

5 differences in zero-point energy (ZPE) and entropy(S), respectively, which are 

6 obtained by the vibrational frequency calculation3,4. 
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1

2

3 Figure S1 N2 adsorption-desorption isotherms of SiO2, Co-SiO2 and BISC
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1

2 Figure S2 Comparison of the catalytic performance of catalysts in sulfite oxidation
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1

2 Figure S3 Recovery performance comparison of BISC, Co-SBA-15, Co-MCM-41, and Co-KIT-6
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1
2 Figure S4 TGA curve of BISC

3 TGA was performed to obtain the thermal behavior of BISC, as exhibited in Figure S4. 

4 The weight loss of 0.93% can be attributed to the elimination of water physically 

5 adsorbed on the mesoporous material. A further mass loss of 0.96% is related to 

6 decomposition of the residual CTAB organic matter present in the pores of BISC5,6. 

7 The third mass loss of 0.26% is ascribed to the small coke residuals, which can 

8 modify surface properties of the siliceous materials and thus influence on catalytic 

9 properties 7. As the carbon amount of BISC is originated from residual CTAB 

10 template and coke residuals, it is determined to be approximately 1.45% via elemental 

11 analysis in Table S2, in agreement with TGA.
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1

2 Figure S5 FT-IR spectra of biochar, Co-SiO2, and BISC
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1

2 Figure S6 Optimized geometries and Bader charge of Co. (a) Co(III), (b) Co(II), (c) Co-SiO2, and 

3 (d) BISC
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1

2 Figure S7 Reaction pathway of sulfite oxidation on Co(Ⅲ) and Co(Ⅱ) surface
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1 Table S1 Cobalt dispersion of prepared catalysts

Samples BISC

(Co/Si=1/20)

BISC

(Co/Si=1/10)

BISC

(Co/Si=2/10)

BISC

(Co/Si=4/10)

Co dispersion, % 0.429 0.283 0.2995 0.3148
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1 Table S2 Physical properties of SiO2, Co-SiO2 and BISC

Sample BET surface area, m2/g Average pore diameter, nm

SiO2 525.1 2.7

Co-SiO2 340.9 10.3

BISC 387.4 9.5
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1

2 Table S3 Chemical composition of samples

Sample C, wt% N, wt% H, wt% O, wt% Si, wt% Co, wt% (ICP) 

Maple residue 47.94 0.16 6.94 44.17 – –

Biochar 84.20 0.26 3.06 11.71 – –

BISC 1.45 0.68 1.70 43.20 39.65 13.32
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1 Table S4 Cobalt content in various catalysts by ICP-OES and the corresponding catalytic 

2 performance in sulfite oxidation

Number Sample Co content, wt% Catalytic activity, S(IV) mmol /L/s Reference

1 BISC (Co/Si=1/20) 4.41 0.1024 This work

2 BISC (Co/Si=1/10) 7.85 0.119 This work

3 BISC (Co/Si=2/10) 13.32 0.1446 This work

4 BISC (Co/Si=4/10) 16.61 0.1444 This work

5 Co-SiO2 (Co/Si=2/10) 14.73 0.1238 This work

6 Mn@ZIF67 18.07 0.094 [9]

7 Co-SBA-15 2.1 0.078 [19]

8 Co(OH)2/TiO2 6 0.113 [22]

9 Co-CNTs 30 0.0694 [33]

10 Co-TiO2 4 0.0398 [35]
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1 Table S5 Chemical reaction parameters with different intermediates

Intermediates ∆E, eV Zero-point energy, eV Entropy, eV/K T, K ∆G, eV

CoO-O2 IS1 -1.32 0.48 0.001467 318.15 -1.31

CoO-O2-SO3
2- IM1 -2.80 0.65 0.001468 318.15 -2.62

CoO-O2-SO3
2- TS -1.10 0.65 0.001658 318.15 -0.98

CoO-O2-SO3
2- IM2 -1.35 0.57 0.001532 318.15 -1.27

CoO-O IS2 -1.77 0.37 0.001159 318.15 -1.77

CoO-O-SO3
2- IM3 -4.00 0.60 0.001267 318.15 -3.80

CoO-O-SO3
2- FS -3.84 0.47 0.001211 318.15 -3.76

Co2O3-O2 IS1 -0.59 0.47 0.001286 318.15 -0.53

Co2O3-O2-SO3
2- IM1 -2.51 0.73 0.001460 318.15 -2.25

Co2O3-O2-SO3
2- TS -0.20 0.47 0.001188 318.15 -0.11

Co2O3-O2-SO3
2- IM2 -0.63 0.53 0.001228 318.15 -0.49

Co2O3-O IS2 -0.80 0.36 0.000911 318.15 -0.74

Co2O3-O-SO3
2- IM3 -3.73 0.63 0.001310 318.15 -3.52

Co2O3-O-SO3
2- FS -3.18 0.61 0.001817 318.15 -3.15

Co-SiO2-O2 IS1 -0.62 0.70 0.001362 318.15 -0.36

Co-SiO2-O2-SO3
2- IM1 -1.80 0.79 0.001891 318.15 -1.61

Co-SiO2-O2-SO3
2- TS 0.34 0.54 0.001244 318.15 0.48

Co-SiO2-O2-SO3
2- IM2 -0.16 0.69 0.001918 318.15 -0.09

Co-SiO2-O IS2 -1.22 0.44 0.001303 318.15 -1.20

Co-SiO2-O-SO3
2- IM3 -1.89 0.22 0.000223 318.15 -1.75

Co-SiO2-O-SO3
2- FS -1.03 0.46 0.001256 318.15 -0.97
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1 Table S6 Adsorption ∆G and Desorption ∆G in the whole reaction

Sample Reaction range SO3
2-Adsorption ∆G, eV SO4

2-Desorption ∆G, eV 

IS1→IM2 -1.25 1.52
Co-SiO2

IS2→FS -0.55 0.78

BISC IS2→FS -0.55 0.78

2
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