Supporting Information

Construction of cobalt oxyhydroxide nanosheets with rich oxygen vacancies as high-performance lithium-ion batteries anodes

Yonghuan Fu,^{‡a} Liewu Li,^{‡ab} Shenghua Ye,^a Penggang Yang,^a Peng Liao,^d Xiangzhong Ren,^a Chuanxin He,^a Qianling Zhang^{*a} and Jianhong Liu^{*ac}

^aGraphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China

^bCollege of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China

^cShenzhen Eigen-Equation Graphene Technology Co. Ltd, Shenzhen, 518000, P. R. China

^dDepartment of Cell Research and Development, Farasis Energy Inc., Hayward, California, 94545, USA

*E-mail address of the corresponding author: zhql@szu.edu.cn; liujh@szu.edu.cn

[‡]Yonghuan Fu and Liewu Li contributed equally to this work.

Fig. S1 SEM images of $Co(OH)_2$ (a) and Co_3O_4 (b); TEM images of $Co(OH)_2$ (c) and Co_3O_4 (d).

Fig. S2 XRD patterns of $Co(OH)_2$ and Co_3O_4 .

Fig. S3 XPS spectrum of CoOOH nanosheets.

Fig. S4 (a) TG profile of CoOOH nanosheets; (b) TGA profile of CoOOH nanosheets.

Fig. S5 Cycling performance of CoOOH, Co(OH)₂, and Co₃O₄ electrodes at 3 A g^{-1} .

Anode materials	Current density (mA g ⁻¹)	Cycle number	Capacity retention	Initial coulombic efficiency (%)	Refs
			$(mAh g^{-1})$		
Co ₃ O ₄ nanosheets	200	100	1717	~68	[1]
CoOOH in Lithium–Sulfur Battery	0.1C (about 100)	100	1199.4		[2]
The composite materials of mica	225	70	650		[3]
flake and cobalt oxide					
The yolk–shell Co ₃ O ₄ /C	200	120	1100	~71	[4]
N-Doped Carbon/Cobalt Ferrite	3000	300	410	~78	[5]
Hybrid Nanocomposites					
Nanoarchitectured Co ₃ O ₄ /reduced	1C(about 1000)	200	513.9		[6]
graphene oxide					
Co ₃ O ₄ nanotubes	100	80	380	~58.7	[7]
nanoparticles-assembled Co ₃ O ₄	200	50	1340	~73	[8]
microspheres					
Oxidizing solid Co into hollow	200	500	871.5	~66.7	[9]
Co ₃ O ₄					
Co ₂ (OH) ₂ CO ₃ nanowires and rGO	200	150	1380	~71.7	[10]
films					
CoOOH nanosheets	200	300	1588	~90	This
					work

Table S1. Comparison of cycling stability and initial coulombic efficiency of CoOOH anode with previously reported cobalt oxide anodes for LIBs.

Fig. S6 (a) Nyquist plots of CoOOH, Co(OH)₂, and Co₃O₄ electrodes (insets show the equivalent circuits for EIS fitting and the detail of Nyquist plots); (b) The relationship between I_{peak} and $v^{1/2}$ for CoOOH electrode; (c) The relationship between I_{peak} and $v^{1/2}$ for Co₃O₄ electrode.

Fig. S7 SEM and High-resolution TEM images of CoOOH (a, d), $Co(OH)_2$ (b, e), and Co_3O_4 (c, f) electrodes after 300 cycles.

Fig. S8 Kinetic analysis of the electrochemical behavior of the Co_3O_4 electrode versus Li⁺/Li. (a) CV curves at various scan rates ranging from 0.1 to 1.5 mV s⁻¹; (b) Determination of b values using the relationship between the peak current and scan rate according to the voltammograms in (a); (c) Contribution ratios of the capacitive and diffusion-controlled effects at various scan rates; (d) The relationship between I_p and v^{1/2}.

Fig. S9 Kinetic analysis of the electrochemical behavior of the Co(OH)₂ electrode versus Li⁺/Li. (a) CV curves at various scan rates ranging from 0.1 to 1.0 mV s⁻¹; (b) Determination of b values using the relationship between the peak current and scan rate according to the voltammograms in (a); (c) Contribution ratios of the capacitive and diffusion-controlled effects at various scan rates; (d) The relationship between I_p and v^{1/2}.

Fig. S10 The relationship between I_{p} and $v^{1/2}$ for the CoOOH electrode.

Fig. S11 A 3 × 3 supercell of the CoOOH (001) crystal surface including 3 atomic layers model.

Fig. S12 The model of the process for adsorption of Li⁺ in O active sites, desorption of Li₂O and formation of VO.

Fig. S13 The model of the process for adsorption of Li⁺ in a OH active site and formation of LiH or LiOH; desorption of LiH and formation of CoOOH–VO–VH.

Fig. S14 The model of the process for adsorption of Li^+ in the O active site of the VH; desorption of Li_2O and formation of CoOOH–VO–VH–VO.

References

- 1. R. Wei, X. Zhou, T. Zhou, J. Hu and J. C. Ho, J. Phys. Chem. C., 2017, 121, 19002-19009.
- 2. Z. Y. Wang, L. Wang, S. Liu, G. R. Li and X. P. Gao, *Adv. Funct. Mater.*, 2019, **29**, 1901051.
- 3. L. Kong, J. Lang, M. Liu, Y. Luo and L. Kang, J. Power Sources, 2009, 194, 1194-1201.
- 4. Y. Wu, J. Meng, Q. Li, C. Niu, X. Wang, W. Yang, W. Li and L. Mai, *Nano Res.*, 2017, 10, 2364-2376.
- 5. N. Dang, T. Nguyen, E. Lizundia, T. Le and M. J. MacLachlan, *ChemistrySelect*, 2020, 5, 8207-8217.
- 6. Z. Chen, Y. Gao, X. Chen, B. Xing, C. Zhang, S. Wang, T. Liu, Y. Liu and Z. Zhang, *Ionics*, 2019, 25, 5779-5786.
- 7. X. Lou, D. Deng, J. Lee, J. Feng and L. A. Archer, *Adv. Mater.*, 2008, **20**, 258-262.
- 8. T. Li, X. Li, Z. Wang, H. Guo, Q. Hu and W. Peng, *Electrochim. Acta*, 2016, 209, 456-463.
- J. Wang, H. Wang, F. Li, S. Xie, G. Xu, Y. She, M. K. H. Leung and T. Liu, J. Mater. Chem. A., 2019, 7, 3024-3030.

10. Y. Dong, Y. Ma, Y. Li, M. Niu, J. Yang, X. Song, D. Li, Y. Liu and J. Zhang, *Nanoscale*, 2019, **11**, 21180-21187.