Support Information for

High Yield Direct Synthesis of Dimethyl Ether from CO₂ and H₂ in Dry Reaction Environment

Huazheng Li ^a, Shoujie Ren ^{a,b}, Shenxiang Zhang ^a, Surya Padinjarekutt ^a, Bratin Sengupta ^a, Xinhua Liang ^b, Shiguang Li ^c, Miao Yu^{*a}

^a Department of Chemical & Biological Engineering, Institution Rensselaer Polytechnic Institute, 110 8Th Street, Troy, NY 12180, USA

^b Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, 1101 N. State Street, Rolla, MO 65409, USA

^c Gas Technology Institute, S Mount Prospect Road, Des Plaines, IL 60018, USA

* Corresponding author; Email: <u>yum5@rpi.edu</u>

Experimental

Membrane synthesis and Catalysts preparation

WCM was prepared following the procedure previously reported.¹ Typically, the ceramic hollow fibers were dip-coated in 1 wt.% seeds solution with seed size of 50-250 nm, and then dried and thermally annealed at 200 °C overnight. Membrane growth was conducted at 80 °C for 5 h in the gel with molar composition of 1Al₂O₃: 5SiO₂: 50 Na₂O: 1000 H₂O, prepared by mixing sodium aluminate (NaAlO₂, Al₂O₃: 50-56 wt.%, Na₂O: 37-45 wt.%, Sigma-Aldrich), Ludox colloidal (40 wt.% in water, Sigma-Aldrich), sodium hydroxide (NaOH, 98 wt.%, Sigma-Aldrich) and DI water. After the hydrothermal synthesis, WCM was washed thoroughly and dried for use in MR.

The Cu/ZnO/Al₂O₃ catalyst with an atomic ratio of 6:3:1 was prepared following the procedure previously reported.² A mixed aqueous nitrate solution (total metal concentration of 0.2 M, 500 mL) of Cu(NO₃)₂·3H₂O, Zn(NO₃)₂·6H₂O, and Al(NO₃)₃·9H₂O and an aqueous solution (0.2 M) of Na₂CO₃ were simultaneously added dropwise into 400 mL of preheated DI water (65-70 °C) under vigorous stirring at 400 rpm. During the co-precipitation process, the precipitating solution was maintained at 65-70 °C and at pH of 6.5-7.0. At the end of co-precipitation, the pH of precipitating solution was immediately adjusted to 7.0 by 0.2 M Na₂CO₃. The precipitates were then aged for 30 minat 70 °C under vigorous stirring (400 rpm). Thereafter, the precipitates were filtered under vacuum and rinsed several times with DI water. The resulting catalyst was dried at 110 °C overnight and further calcined in air at 360 °C for 4 h with a heating rate of 2 °C·min⁻¹.

HZSM-5 catalyst was prepared by calcining ammonia-ZSM-5 (SiO₂:Al₂O₃ = 23:1, surface area of 425 m²/g, Alfa Aesar) at 500 °C for 5 h in air with heating rate of 10 °C/min. Bifunctional catalysts with different mass ratios (1:2, 1:1, 4:1, 5:1) were prepared by physically mixing CZA and HZSM-5 powders.

Characterizations

WCM and catalysts were characterized by SEM, TEM, XRD, BET and ICP-AES before the reaction, and the results was consistent with those previously reported^{1,2}. These characterization results, therefore, were not shown here.

The content of coke in spent catalyst was determined by TGA-Q50 (TA Instruments). In order to remove adsorbed water and CO₂ from the catalyst, the sample was heated to 100 °C with a ramping

rate of 10 °C·min⁻¹ under N₂ flow of 100 sccm and stayed for 60 min. Then, the catalyst was heated to 1,000 °C with the same heating rate and N₂ flow rate to determine the coke amount.

DME synthesis in MR

A homemade packed bed membrane reactor system was used to perform the catalytic testing. ~0.34 g of bifunctional catalysts were loaded in the shell side of the membrane reactor and reduced in situ at 250 °C for 10 h with 20 sccm of H₂ before the test. The catalytic reaction was performed with a pre-mixed gas mixture with H₂/CO₂ molar ratio of 3:1 at flow rate of 20-28 sccm (GHSV: 3,500-4,700 L·kg_{cat}-1·h⁻¹) at reaction temperature of 220-260 °C and pressure of 35 bar. The compositions of the permeate (purged with 250 ml·min⁻¹ Helium) and retentate (outlet stream of MR, diluted with 10 sccm Helium, splitting method) were analyzed by an on-line gas chromatography (GC7890, Agilent) equipped with TCD and FID detectors. A long-term run over 100 h of time on stream was performed to evaluate the long-term stability. The flow rate of the outlet stream was measured using a bubble flow meter. For bifunctional catalysts with mass ratio of 1/1, 4/1 and 5/1, only MeOH, CO and DME were detected as the products. For bifunctional catalysts with mass ratio of 1/2, a small amount of an unidentified product was formed when reaction temperature was higher than 220 °C.

DME synthesis in TR

The system and procedure for catalytic testing in TR were similar to those of MR, except WCM was replaced by a non-permeable membrane support with the same size as WCM. The non-permeable membrane support was prepared by applying a thin layer of glaze on the outer surface of a ceramic hollow fiber, followed by curing at 1000 °C for 3 h with increasing and decreasing rates of 2 °C·min⁻¹. Before being applied in TR, it was tested and confirmed to be non-permeable to any gases.

The CO₂ conversion, product selectivity and yield were calculated as follows:

$$X_{CO_2} = \frac{n_{CO2 - in} - n_{CO2 - out}}{n_{CO2 - in}} \times 100$$

$$S_{CO} = \frac{n_{CO}}{n_{CO} + n_{MeOH} + 2 * n_{DME}} \times 100\%$$
(S1)
(S2)

$$S_{MeOH} = \frac{n_{MeOH}}{n_{CO} + n_{MeOH} + 2 * n_{DME}} \times 100\%$$
(S3)

$$S_{DME} = \frac{2 * n_{DME}}{n_{CO} + n_{MeOH} + 2 * n_{DME}} \times 100\%$$
(S4)

$$Y_{CO} = \frac{nCO}{n_{CO2 - in}} \times 100_{\%}$$
(S5)

$$Y_{MeOH} = \frac{nMeOH}{n_{CO2-in}} \times 100_{\%}$$
(S6)

$$Y_{DME} = \frac{2 * n_{DME}}{n_{CO2 - in}} \times 100_{0/0}$$
(S7)

where, n_{CO2} , n_{CO} , n_{MeOH} and n_{DME} is mole of CO₂, CO, MeOH and DME, respectively.

For n_{CO2-in} represents the mole of feed-in CO₂, and $n_{CO2-out}$ represents the mole of outlet CO₂. For the mole of outlet CO₂ and other components, it is calculated as follows:

$$n_i = n_{P,i} + n_{O,i}$$
 (S8)

where, $n_{P,i}$ and $n_{O,i}$ is the mole of component *i* in the permeate side and outlet stream, respectively. In other words, for MR, mole of component *i* both in the permeate side and outlet stream was used. For TR, only mole of component *i* in the outlet stream was used due to that of in the permeate side was zero.

Results and Discussions

Table S1. Comparisons of catalytic CO_2 conversion and DME yields between the results in this study and those reported in literatures.

Number	Temperature and Pressure, °C/bar	CO ₂ conversion, %	DME yield, %	Catalysts	Reactor	References
1	250 & 50	29	18.0	CZZ/FER	TR	3
2	260 & 50	26	14.5	CZZ/FER	TR	4
3	260 & 30	24.5	12.6	CZZ/FER	TR	5
4	260 & 50	23.6	11.1	CZZ/FER	TR	6
5	260 & 30	21.9	8.3	CZZ/FER	TR	5
6	250 & 20	17.5	5	CZZ/FER	TR	7
7	260 & 50	29	18.9	CZA/HZSM-5	TR	8
8	240 & 28	26.2	18.3	CZZA/HZSM-5	TR	9
9	260 & 30	24.3	19.6	CuFeCe/HZSM-5	TR	2
10	260 & 30	20.9	13.2	CuFeCe/HZSM-5	TR	10
11	250 & 30	15.6	7.4	CuTiZr/HZSM-5	TR	11
12	240 & 30	23.6	11.1	CZZ/HZSM-5	TR	12
13	250 & 50	23	5.2	CuZn(Ga)/Al2O3	TR	13
14	260 & 50	15	4.5	CZA/Al2O3	TR	8
15	270 & 50	9	2.8	CZ/A12O3	TR	14
16	260 & 20	18.1	4.4	CZZ/SO4 ²⁻ -ZrO2	TR	15
17		25.5	11.5	CZA/H 1/1	TR	
18	250 & 35	70.0	54.5	ZSM-5 4/1	MD	This study
19		73.4	47.7	5/1	IVIK	

Figure S1. Product selectivity of direct DME synthesis from CO_2 and H_2 at different temperatures and 35 bar in TR (black) and MR (red). Membrane length: 45 mm, CZA/HZSM-5=1/1, GHSV= 4,200 L·kg_{cat}-1·h⁻¹, results were averaged within the first 4 hours of testing.

Figure S2. Product selectivity of direct DME synthesis from CO_2 and H_2 over different mass ratios of CZA/HZSM-5 at 250 °C and 35 bar in TR and MR. Membrane length: 45 mm, GHSV= 4,200 L·kg_{cat}⁻¹·h⁻¹, results were averaged within the first 4 h of testing.

Figure S3. Catalytic CO₂ conversion (a), product yield (b) and product selectivity (c) of direct DME synthesis from CO₂ and H₂ over different mass ratios of CZA/HZSM-5 at 240 °C and 35 bar in TR and MR. Membrane length: 45 mm, GHSV= 4,200 L·kg_{cat}⁻¹·h⁻¹, results were averaged within the first 4 h of testing.

Figure S4. Stability of DME synthesis in MR. a) Long-term stability testing on CZA/HZSM-5=1/2 at 220 °C and 35 bar. b) Comparisons of catalytic performance change in MR and TR².

Figure S5. TGA of spent bifunctional catalyst with CZA/HZSM-5=5/1 in MR.

References:

- 1 H. Li, C. Qiu, S. Ren, Q. Dong, S. Zhang, F. Zhou, X. Liang, J. Wang, S. Li and M. Yu, *Science (80-.).*, 2020, **367**, 667 LP 671.
- 2 S. Ren, X. Fan, Z. Shang, W. R. Shoemaker, L. Ma, T. Wu, S. Li, N. B. Klinghoffer, M. Yu and X. Liang, *J. CO2 Util.*, 2020, **36**, 82–95.
- G. Bonura, F. Frusteri, C. Cannilla, G. Drago Ferrante, A. Aloise, E. Catizzone, M. Migliori and G. Giordano, *Catal. Today*, 2016, **277**, 48–54.
- 4 Q. Sheng, R.-P. Ye, W. Gong, X. Shi, B. Xu, M. Argyle, H. Adidharma and M. Fan, *J. Environ. Sci.*, 2020, **92**, 106–117.
- 5 G. Bonura, M. Migliori, L. Frusteri, C. Cannilla, E. Catizzone, G. Giordano and F. Frusteri, *J. CO2 Util.*, 2018, **24**, 398–406.
- 6 T. Su, X. Zhou, Z. Qin and H. Ji, *ChemPhysChem*, 2017, **18**, 299–309.
- F. Frusteri, M. Migliori, C. Cannilla, L. Frusteri, E. Catizzone, A. Aloise, G. Giordano and G. Bonura, J. CO2 Util., 2017, 18, 353–361.
- 8 S. P. Naik, T. Ryu, V. Bui, J. D. Miller, N. B. Drinnan and W. Zmierczak, *Chem. Eng. J.*, 2011, **167**, 362–368.
- 9 G. Bonura, C. Cannilla, L. Frusteri, A. Mezzapica and F. Frusteri, *Catal. Today*, 2017, **281**, 337–344.
- 10 X. Zhou, T. Su, Y. Jiang, Z. Qin, H. Ji and Z. Guo, *Chem. Eng. Sci.*, 2016, **153**, 10–20.
- 11 S. Wang, D. Mao, X. Guo, G. Wu and G. Lu, *Catal. Commun.*, 2009, **10**, 1367–1370.
- 12 G. Bonura, M. Cordaro, C. Cannilla, A. Mezzapica, L. Spadaro, F. Arena and F. Frusteri, *Catal. Today*, 2014, **228**, 51–57.
- 13 H. Ham, S. W. Baek, C.-H. Shin and J. W. Bae, ACS Catal., 2019, 9, 679–690.
- 14 R. J. da Silva, A. F. Pimentel, R. S. Monteiro and C. J. A. Mota, *J. CO2 Util.*, 2016, **15**, 83–88.
- 15 C. Temvuttirojn, N. Chuasomboon, T. Numpilai, K. Faungnawakij, M. Chareonpanich, J. Limtrakul and T. Witoon, *Fuel*, 2019, **241**, 695–703.