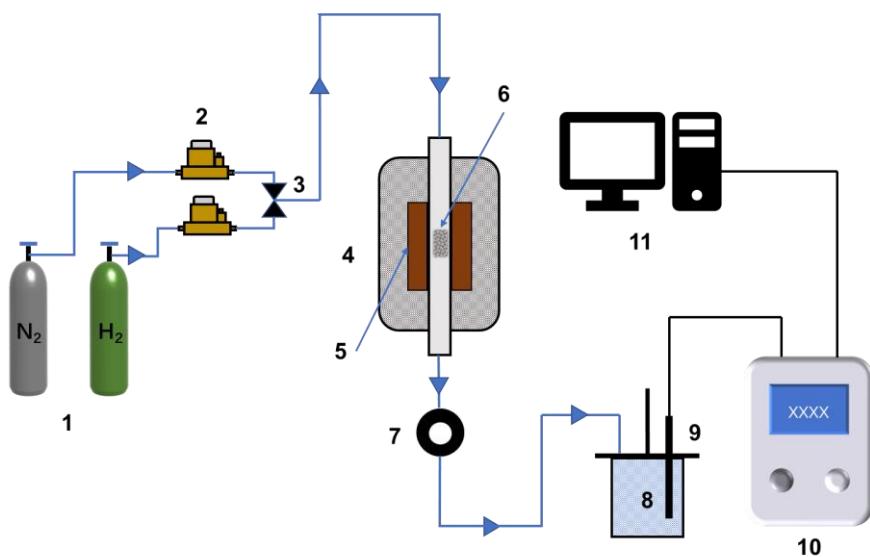
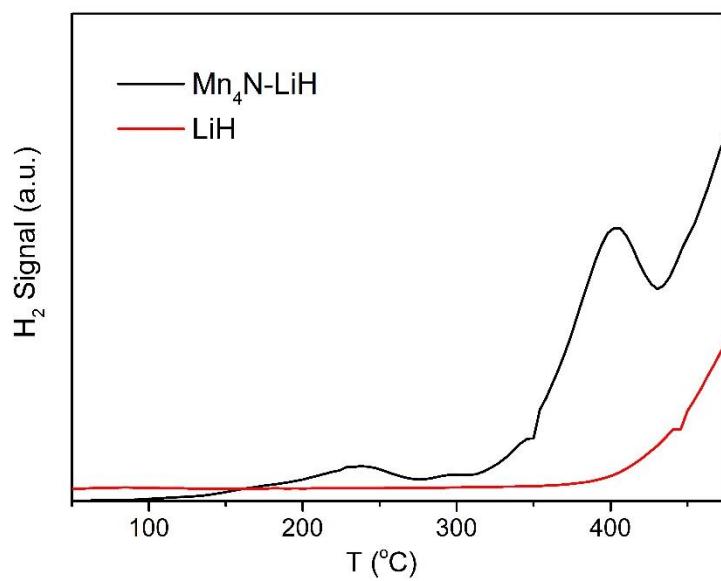


Supporting Information

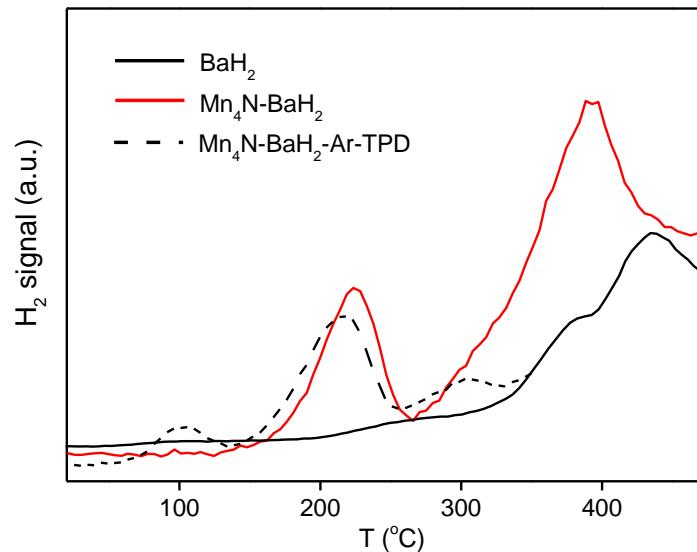
Multi-functional composite nitrogen carrier for ammonia production via chemical looping route

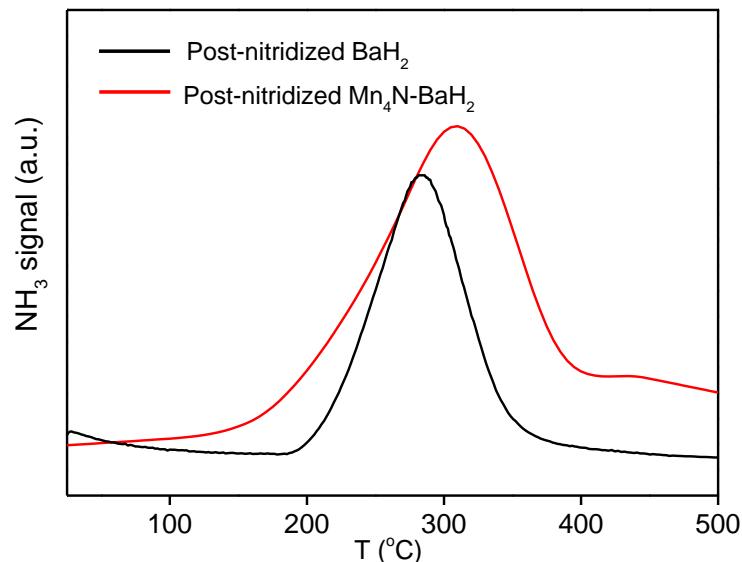

Sheng Feng, ^{† ab} Wenbo Gao, ^{† b} Qianru Wang, ^b Yeqin Guan, ^b Hanxue Yan, ^b Han Wu, ^b Hujun Cao,* ^b
Jianping Guo* ^b and Ping Chen ^{ab}

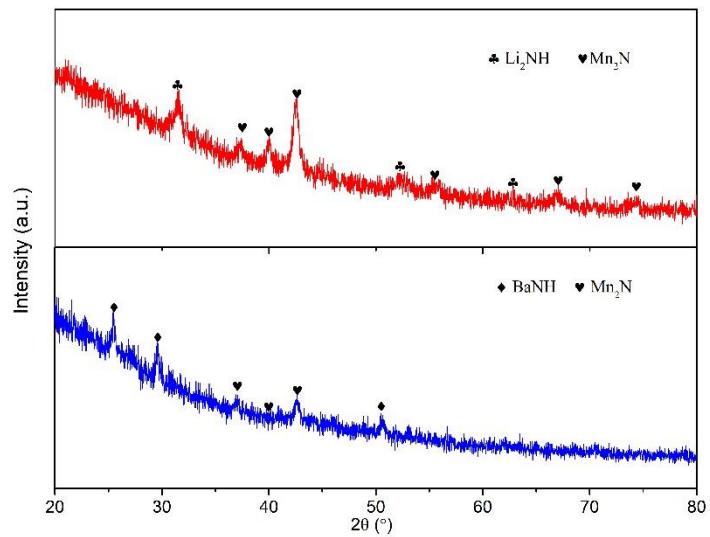
a. Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, China.

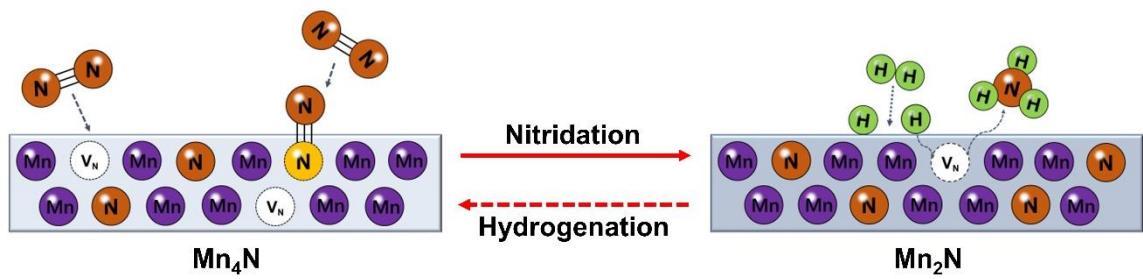

b. Dalian National Laboratory for Clean Energy, State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.

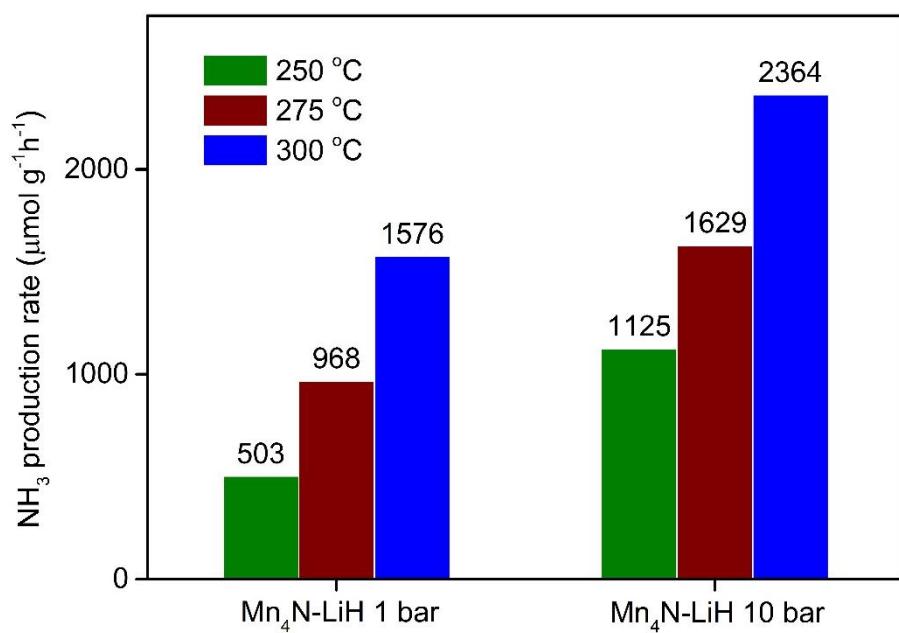
† These authors have contributed equally.

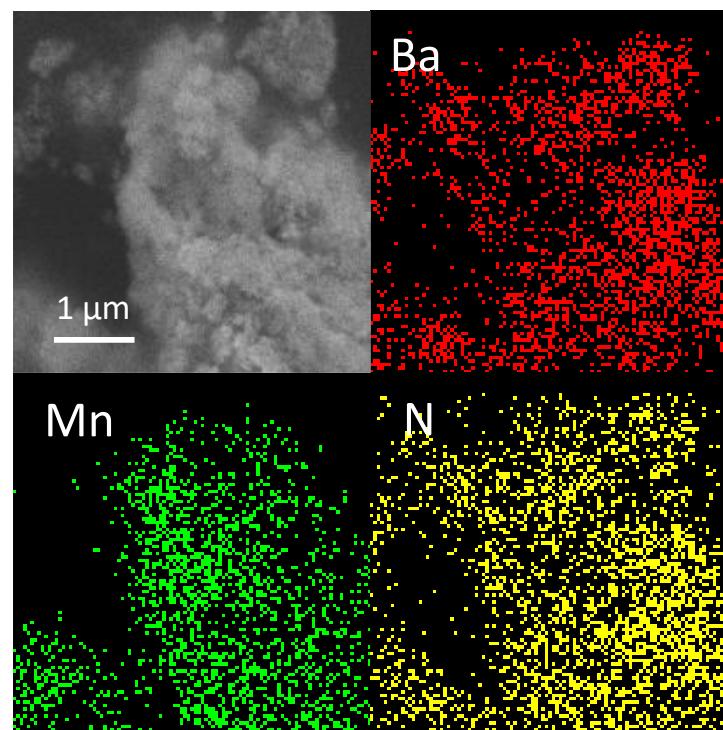

*e-mail: guojianping@dicp.ac.cn and caohujun@dicp.ac.cn

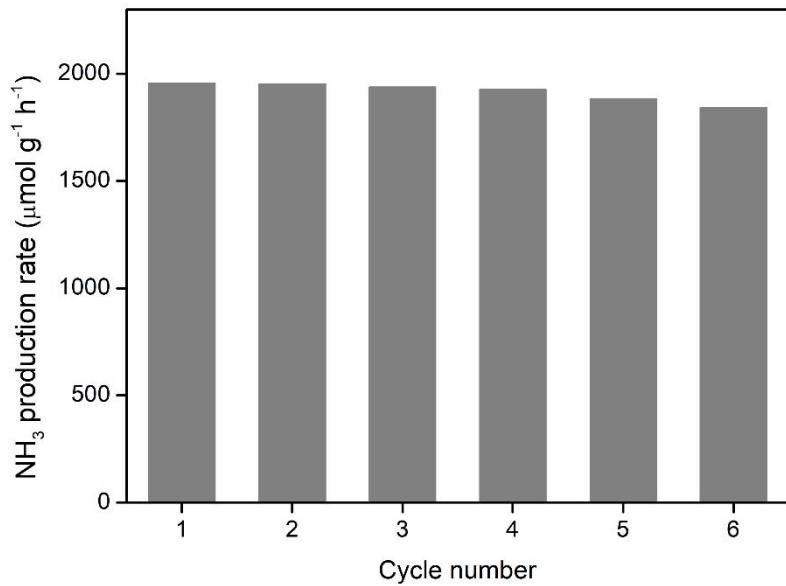

Fig. S1. The diagram of evaluation system for chemical looping ammonia synthesis. 1:gas cylinder, 2:mass flowmeter, 3: four-way valve, 4: reactor, 5: heating block, 6: N carrier materials, 7: counterbalance valve, 8: diluted sulfuric acid solution, 9: electrode, 10: conductivity meter, 11: computer.


Fig. S2. N₂-TPR-MS profiles of LiH and Mn₄N-LiH samples. N₂ flow rate – 30 ml min⁻¹, ramping rate – 5 °C min⁻¹. The data of LiH was taken from ref. ¹.


Fig. S3. N₂-TPR-MS profiles of BaH₂ and Mn₄N-BaH₂ samples (solid lines), and Ar-TPD-MS profile of Mn₄N-BaH₂ (dashed line). It is clearly seen that the reaction of N₂ and BaH₂ is much easier with the presence of Mn₄N. The N₂-TPR-MS profile of Mn₄N-BaH₂ shows two apparent H₂ peaks which are centered around 220 and 390 °C, respectively. By comparing with Ar-TPD-MS profile, it could be concluded that the H₂ peak at around 220 °C corresponds to the interaction between Mn₄N and BaH₂. The peak around 390 °C is mainly due to the fixation of N₂, which is at least 50 °C lower than that of BaH₂. N₂ or Ar flow rate – 30 ml min⁻¹, ramping rate – 5 °C min⁻¹. The data of BaH₂ were taken from ref. ¹.


Fig. S4. H₂-TPR-MS profiles of post-nitridized BaH₂ (i.e., BaNH) and Mn₄N-BaH₂ samples. H₂ flow rate – 30 ml min⁻¹, ramping rate – 5 °C min⁻¹. The data of BaH₂ was taken from ref. ¹.


Fig. S5. XRD patterns of Mn_4N - LiH and Mn_4N - BaH_2 samples collected after second nitridation step.


Fig. S6. Schematic diagram of CLAS mediated by Mn nitride. The nitrogen vacancies (V_N) may function as the active site for the activation and dissociation of N_2 molecules.

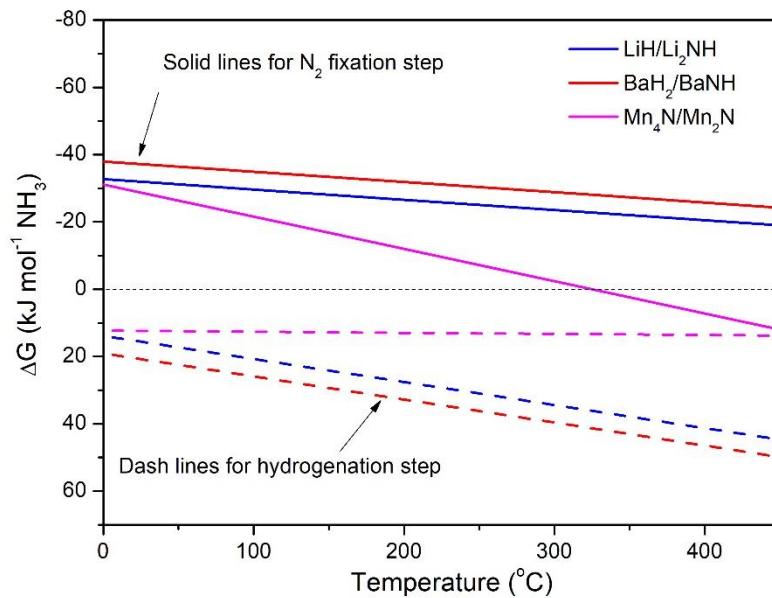

Fig. S7. NH_3 production rates of $\text{Mn}_4\text{N-LiH}$ under 1 bar and 10 bar of pressure, respectively. Reaction conditions: WHSV = 60000 $\text{ml g}^{-1} \text{h}^{-1}$.

Fig. S8. SEM and elemental mapping images of the nitridized $\text{Mn}_4\text{N-BaH}_2$ sample.

Fig. S9. Cyclic test of Mn₄N-BaH₂ sample for chemical looping ammonia synthesis at 275 °C and 1 bar of N₂ and H₂.

Fig. S10. Thermodynamic analyses of N₂ fixation and hydrogenation steps for LiH/Li₂NH, BaH₂/BaNH and Mn₄N/Mn₂N pairs. The solid lines are the temperature dependences of ΔG for N₂ fixation over BaH₂, LiH and Mn₄N forming BaNH, Li₂NH and Mn₂N, respectively. The dashed lines are the temperature dependences of ΔG for hydrogenation of BaNH, Li₂NH and Mn₂N. The entropies of solids are not considered. The thermodynamic data used in this figure are given in Tables S1 and S2.

Table S1. Thermodynamic calculations of the nitridation of AH and Mn₄N. The entropies of solids are not considered. The standard enthalpies of formation ($\Delta_f H^\circ$) of Li₂NH (ref.²) and BaNH (ref.³) are taken from the literatures. The standard enthalpies of formation of other substances are taken from “NIST Standard Reference Database Number 69”.⁴

Reaction	2LiH	+	1/2N ₂	→	Li ₂ NH	+	1/2H ₂	$\Delta_f H^\circ$ (kJ mol ⁻¹)	$\Delta_r H^\circ$ (kJ mol ⁻¹)	$\Delta_r S^\circ$ (J mol ⁻¹ K ⁻¹)
$\Delta_f H^\circ$ (kJ mol ⁻¹)	-90.5		0		-222		0	-41		---
S° (J mol ⁻¹ K ⁻¹)	---		191.6		---		130.7	---		-30.5
Reaction	BaH ₂	+	1/2N ₂	→	BaNH	+	1/2H ₂	$\Delta_f H^\circ$ (kJ mol ⁻¹)	$\Delta_r H^\circ$ (kJ mol ⁻¹)	$\Delta_r S^\circ$ (J mol ⁻¹ K ⁻¹)
$\Delta_f H^\circ$ (kJ mol ⁻¹)	-178.7		0		-224.9		0	-46.2		---
S° (J mol ⁻¹ K ⁻¹)	---		191.6		---		130.7	---		-30.5
Reaction	Mn ₄ N	+	1/2N ₂	→	2Mn ₂ N			$\Delta_f H^\circ$ (kJ mol ⁻¹)	$\Delta_r H^\circ$ (kJ mol ⁻¹)	$\Delta_r S^\circ$ (J mol ⁻¹ K ⁻¹)
$\Delta_f H^\circ$ (kJ mol ⁻¹)	-128.7		0		-93			-57.3		---
S° (J mol ⁻¹ K ⁻¹)	0		191.6		0			---		-95.8

Table S2. Thermodynamic calculations of the hydrogenation of ANH and Mn₂N. The entropies of solids are not considered.

Reaction	Li ₂ NH	+	2H ₂	→	2LiH	+	NH ₃	Δ _r H° (kJ mol ⁻¹)	Δ _r S° (J mol ⁻¹ K ⁻¹)
Δ _f H° (kJ mol ⁻¹)	-222		0		-90.5		-45.9	-4.9	---
S° (J mol ⁻¹ K ⁻¹)	---		130.7		---		192.8	---	-68.6
Reaction	BaNH	+	2H ₂	→	BaH ₂	+	NH ₃	Δ _r H° (kJ mol ⁻¹)	Δ _r S° (J mol ⁻¹ K ⁻¹)
Δ _f H° (kJ mol ⁻¹)	-224.9		0		-178.7		-45.9	0.3	---
S° (J mol ⁻¹ K ⁻¹)	---		130.7		---		192.8	---	-68.6
Reaction	2Mn ₂ N	+	3/2H ₂	→	Mn ₄ N	+	NH ₃	Δ _r H° (kJ mol ⁻¹)	Δ _r S° (J mol ⁻¹ K ⁻¹)
Δ _f H° (kJ mol ⁻¹)	-93		0		-128.7		-45.9	11.4	---
S° (J mol ⁻¹ K ⁻¹)	---		130.7		0		192.8	---	-3.25

References

1. W. Gao, J. Guo, P. Wang, Q. Wang, F. Chang, Q. Pei, W. Zhang, L. Liu and P. Chen, *Nat. Energy*, 2018, **3**, 1067-1075.
2. P. Chen, Z. Xiong, J. Luo, J. Lin and K. L. Tan, *Nature*, 2002, **420**, 302-304.
3. A. P. Altshuller, *J. Chem. Phys.*, 1955, **23**, 1561-1562.
4. NIST Standard Reference Database Number 69. National Institute of Standards and Technology (2017) <https://webbook.nist.gov/chemistry/>.