Electronic supplementary information (ESI)

Efficient spatial charge separation in unique 2D tandem heterojunction Cd_xZn_1 . _xIn₂S₄-CdS-MoS₂ rendering highly-promoted visible-light-induced H₂ generation

Jiakun Wu,[†]^a Bowen Sun,[†]^a Hui Wang,^c Yanyan Li,^a Ying Zuo,^d Wenjing Wang,^a Haifeng Lin,^{*}^a Shaoxiang Li^b and Lei Wang^{*ab}

^a Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China. E-mail: hflin20088@126.com

^b Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China. E-mail: inorchemwl@126.com

^c Key Laboratory of Rubber-Plastics of Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.

^d Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China.

+ Equal contribution to this work.

Characterization Results

Fig. S1 XRD pattern of CdIn₂S₄ nanosheets.

Fig. S2 Determined bandgaps of (a) MoS_2 and (b) CdS, $ZnIn_2S_4$, and $C_{0.15}ZIS$.

Fig. S3 N₂ adsorption-desorption isotherms and corresponding pore-size distributions of (a) CdS, (b) MoS_2 , (c) $ZnIn_2S_4$, (d) $C_{0.15}ZIS$, (e) $C_{0.20}ZIS$, and (f) $C_{0.15}ZIS$ -5C-3M.

Table S1. BET surface areas of different samples.

Photocatalyst	CdS	MoS ₂	ZnIn ₂ S ₄	C _{0.15} ZIS	C _{0.20} ZIS	C _{0.15} ZIS-5C-3M
S _{BET} (m ² ·g ⁻¹)	5.39	23.78	60.94	46.85	42.32	54.64

Fig. S4 (a) TEM and (b) HRTEM images of the CdS nanocrystals prepared without the presence of $C_{0.15}$ ZIS substrate.

Fig. S5 (a) TEM and (b) HRTEM images of MoS_2 nanosheets.

Fig. S6 EPR spectrum of MoS₂ nanosheets.

Fig. S7 (a) Cd 3d, (b) Zn 2p, (c) In 3d, and (d) S 2p XPS spectra of $C_{0.15}$ ZIS nanosheets. (e) Mo 3d and (f) S 2p XPS spectra of MoS₂ nanosheets.

For C_{0.15}ZIS nanosheets, the doublet signals of Cd 3d, Zn 2p, and In 3d spectra locating at 405.5-412.2 eV (Fig. S7a), 1021.7-1044.7 eV (Fig. S7b), and 445.1-452.6 eV (Fig. S7c) are associated with the Cd^{2+,1}Zn^{2+,2}In³⁺³ valence states, respectively. In the S 2p spectrum (Fig. S7d), the peaks at 161.7 and 162.9 eV could be assigned to the S²⁻ ions.⁴ Regarding to MoS₂ nanosheets, the Mo 3d spectrum consists of two sets of doublet peaks at 228.8-232.0 eV and 229.6-232.9 eV (Fig. S7e), which match well with that of Mo⁴⁺ and Mo⁵⁺ species,^{5,6} respectively. Moreover, the S 2p spectrum exhibits two sets of doublet signals at 161.9-163.0 eV and 163.4-164.5 eV (Fig. S7f), corresponding to the S²⁻ and S₂²⁻ ions,^{7,8} respectively.

Fig. S8 (a) Visible-light-induced H_2 formation activities of different samples. (b) The influence of sacrificial agent on the HER activity of $C_{0.15}$ ZIS-5C-3M.

Fig. S9 Photocatalytic HER activities and corresponding rates different photocatalysts. (a, b) C_x ZIS (x = 0.05, 0.10, 0.15, and 0.20), x equals to 0 and 1 for ZnIn₂S₄ and CdIn₂S₄, respectively. (c, d) $C_{0.15}$ ZIS-yC (y = 0, 1, 3, 5, and 7). (e, f) $C_{0.15}$ ZIS-5C-zM (z = 0, 1, 2, 3, 4, and 5).

Fig. S10 H_2 evolution curves of $C_{0.15}$ ZIS-5C-3M for calculating the AQY at 400 and 420 nm.

Fig. S11 XRD patterns of the $C_{0.15}$ ZIS-5C-3M hybrid before and after HER test.

Fig. S12 (a) TEM and (b) HRTEM graphs of the $C_{0.15}$ ZIS-5C-3M after HER measurement.

Fig. S13 (a) XPS survey, (b) Cd 3d, (c) Zn 2p, (d) In 3d, (e) Mo 3d, and (f) S 2P spectra of $C_{0.15}$ ZIS-5C-10M after HER test.

Fig. S14 Mott-Schottky curves of (a) $C_{0.15}$ ZIS, (b) CdS, and (c) MoS₂.

Table S2. Comparison on the	photocatalytic HER activities	of ZnIn ₂ S ₄ -based composites.
-----------------------------	-------------------------------	--

Photocatalyst	Hole scavenger (aqueous solution)	Light source (Xe lamp)	Maximum rate (mmol·h ⁻¹ ·g ⁻¹)	AQE (420 nm)	Reference
Cd _x Zn _{1-x} In ₂ S ₄ -CdS-MoS ₂	Lactic acid	λ > 400 nm	27.14	11.80%	This work
				19.97% (400 nm)	
MoS ₂ /ZnIn ₂ S ₄	Na_2S/Na_2SO_3	λ > 420 nm	3.89	-	9
MoS ₂ /ZnIn ₂ S ₄	Lactic acid	λ > 420 nm	8.04	-	10
MoS ₂ QDs@ZnIn ₂ S ₄ @RGO	Lactic acid	UV and vis	5.791	54.17%	11
MoS ₂ QDs@Vs-MZnIn ₂ S ₄	Na_2S/Na_2SO_3	λ > 420 nm	6.88	63.87%	12
RGO/ZnIn ₂ S ₄	Lactic acid	λ > 420 nm	0.81	-	13
RGO/ZnIn ₂ S ₄	TEOA	λ > 420 nm	2.64	4.4%	14
ZnIn ₂ S ₄ @NH ₂ -MIL-125(Ti)	Na_2S/Na_2SO_3	λ > 420 nm	2.20	4.3%	15
UiO-66@ZnIn ₂ S ₄	TEOA	λ > 400 nm	3.06	9.84%	16
H-doped ZnIn ₂ S ₄	Na_2S/Na_2SO_3	λ > 420 nm	2.15	13.2%	17
N-doped ZnIn ₂ S ₄	TEOA	λ > 400 nm	11.08	13.8%	18
Oxygen-Doped ZnIn ₂ S ₄	Na_2S/Na_2SO_3	λ > 420 nm	2.12	-	19
Cubic/Hexagonal ZnIn ₂ S ₄	Na_2S/Na_2SO_3	λ > 420 nm	3.80	18.67%	20
Half-unit-cell ZnIn ₂ S ₄	TEOA	λ > 400 nm	13.47	53.68% (365 nm)	21
Co ₉ S ₈ @ZnIn₂S₄	TEOA	λ > 400 nm	6.25	-	22
AgIn ₅ S ₈ /ZnIn ₂ S ₄	Na_2S/Na_2SO_3	λ > 420 nm	0.94	-	23
Ti (IV)/ZnIn ₂ S ₄	Na_2S/Na_2SO_3	λ > 420 nm	3.68	-	24
Ti ₃ C ₂ T _X MXene@ZnIn ₂ S ₄	TEOA	λ > 420 nm	3.47	11.14%	25
NiS/ZnIn ₂ S ₄	Lactic acid	λ > 420 nm	3.33	32%	26
g-C ₃ N ₄ /ZnIn ₂ S ₄	TEOA	λ > 420 nm	4.85	-	27
MoC-QDs/C/ZnIn ₂ S ₄	lactic acid	λ > 400 nm	1.13	-	28
ZnIn ₂ S ₄ /pCN	TEOA	λ > 420 nm	0.81	-	29
MoS ₂ /Cu-ZnIn ₂ S ₄	Ascorbic acid	λ > 420 nm	5.46	13.6%	30
ZnIn ₂ S ₄ /In(OH) ₃ -%Pt	TEOA	λ > 420 nm	1.47	38.3%	31
ZnIn ₂ S ₄ /MoSe ₂	Na_2S/Na_2SO_3	λ > 420 nm	2.22	21.39%	32
Mo ₂ C/ZnIn ₂ S ₄	TEOA	λ > 400 nm	22.11	71.6%	33

References:

- 1 Z. P. Yan, X. X. Yu, A. L. Han, P. Xu and P. W. Du, J. Phys. Chem. C, 2014, 118, 22896.
- Y. Z. Wang, D. Chen, L. S. Qin, J. H. Liang and Y. X. Huang, *Phys. Chem. Chem. Phys.*, 2019, **21**, 25484.
- 3 M. Zhou, S. B. Wang, P. J. Yang, Z. S. Luo, R. S. Yuan, A. M. Asiri, M. Wakeel and X. C. Wang, *Chem. Eur. J.*, 2018, **24**, 18529.
- 4 S. D. Guan, X. L. Fu, Y. Zhang and Z. J. Peng, *Chem. Sci.*, 2018, **9**, 1574.
- 5 K. Q. Lu, M. Y. Qi, Z. R. Tang and Y. J. Xu, *Langmuir*, 2019, **35**, 11056.
- Y. H. Chang, R. D. Nikam, C. T. Lin, J. K. Hang, C. C. Tseng, C. L. Hsu, C. C. Cheng, C. Y. Su, L. J.
 Li and D. H. C. Chua, ACS Appl. Mater. Interfaces, 2014, 6, 17679.
- 7 L. Ye, J. L. Fu, Z. Xu, R. S. Yuan and Z. H. Li, ACS Appl. Mater. Interfaces, 2014, 6, 3483.
- 8 D. Merki, S. Fierro, H. Vrubel and X. L. Hu, *Chem. Sci.*, 2011, **2**, 1262.
- Z. Z. Zhang, L. Huang, J. J. Zhang, F. J. Wang, Y. Y. Xie, X. T. Shang, Y. Y. Gu, H. B. Zhao and X.
 X. Wang, *Appl. Catal. B: Environ.*, 2018, **233**, 112.
- G. P. Chen, N. Ding, F. Li, Y. Z. Fan, Y. H. Luo, D. M. Li and Q. B. Meng, *Appl. Catal. B: Environ.*, 2014, 161, 614.
- S. Q. Zhang, L. L. Wang, C. B. Liu, J. M. Luo, J. Crittenden, X. Liu, T. Cai, J. L. Yuan, Y. Pei and Y.
 T. Liu, *Water Res.*, 2017, **121**, 11.
- 12 S. Q. Zhang, X. Liu, C. B. Liu, S. Luo, L. L Wang, T. Cai, Y. X. Zeng, J. L. Yuan, W. Y. Dong, Y. Pei and Y. T. Liu, *ACS Nano*, 2018, **12**, 751.
- 13 L. Ye, J. L. Fu, Z. Xu, R. S. Yuan and Z. H. Li, ACS Appl. Mater. Interfaces, 2014, 6, 3483.
- 14 Y. Xia, Q. Li, K. Lv, D. G. Tang and M. Li, *Appl. Catal. B: Environ.*, 2017, **206**, 344.
- 15 H. Liu, J. Zhang and D. Ao, *Appl. Catal. B: Environ.*, 2018, **221**, 433.
- 16 X. X. Peng, L. Ye, Y. C. Ding, L. C. Yi, C. Zhang and Z. H. Wen, *Appl. Catal. B: Environ.*, 2020, 260, 118152.
- Y. W. Zhu, L. L. Wang, Y. T. Liu, L. H. Shao and X. N. Xia, *Appl. Catal. B: Environ.*, 2019, **241**, 483.
- 18 C. Du, B. Yan, Z. Y. Lin and G. W. Yang, J. Mater. Chem. A, 2020, 8, 207.

- 19 W. L. Yang, L. Zhang, J. F. Xie, X. D. Zhang, Q. H. Liu, T. Yao, S. Q. Wei, Q. Zhang and Y. Xie, Angew. Chem. Int. Ed., 2016, 55, 6716.
- J. G. Wang, Y. J. Chen, W. Zhou, G. H. Tian, Y. T. Xiao, H. Y. Fu and H. G. Fu, *J. Mater. Chem. A*, 2017, 5, 8451.
- C. Du, Q. Zhang, Z. Y. Lin, B. Yan, C. X. Xia and G. W. Yang, *Appl. Catal. B: Environ.*, 2019, 248, 193-201.
- 22 S. B. Wang, B. Y. Guan, X. Wang and X. W. D. Lou, J. Am. Chem. Soc., 2018, 140, 15145.
- Z. J. Guan, Z. Q. Xu, Q. Y. Li, P. Wang, G. Q. Li and J. J. Yang, *Appl. Catal. B: Environ.*, 2018, 227, 512.
- G. Ma, C. Q. Shang, M. L. Jin, L. L. Shui, Q. G. Meng, Y. G. Zhang, Z. Zhang, H. Liao, M. Li, Z. H.
 Chen, M. Z. Yuan, X. Wang, C. Y. Wang and G. F. Zhou, *J. Mater. Chem. C*, 2020, 8, 2693.
- G. C. Zuo, Y. T. Wang, W. L. Teo, A. Xie, Y. Guo, Y. X. Dai, W. Q. Zhou, D. Jana, Q. M. Xian, W.
 Dong and Y. L. Zhao, *Angew. Chem. Int. Ed.*, 2020, 59, 11287.
- A. H. Yan, X. W. Shi, F. Huang, M. Fujitsuk and T. Majim, *Appl. Catal. B: Environ.*, 2019, 250, 163.
- Z. Q. Gao, K. Y. Chen, L. Wang, B. Bai, H. Liu and Q. Z. Wang, *Appl. Catal. B: Environ.*, 2020, 268, 118462.
- F. Gao, Y. Zhao, L. L. Zhang, B. Wang, Y. Z. Wang, X. Y. Huang, K. Q. Wang, W. H. Feng and P. Liu, J. Mater. Chem. A, 2018, 6, 18979.
- H. C. Yang, R. Y. Cao, P. X. Sun, J. M. Yin, S. W. Zhang and X. J. Xu, *Appl. Catal. B: Environ.*, 2019, 256, 117862.
- Y. J. Yuan, D. Q. Chen, J. S. Zhong, L. X. Yang, J. J. Wang, M. J. Liu, W. G. Tu, Z. T. Yu and Z. G.
 Zou, J. Mater. Chem. A, 2017, 5, 15771.
- 31 Y. X. Li, Y. L. Hou, Q. Y. Fu, S. Q. Peng and Y. H. Hu, *Appl. Catal. B: Environ.*, 2017, **206**, 726.
- 32 D. Q. Zeng, L. Xiao, W. J. Ong, P. Y. Wu, H. F. Zheng, Y. Z. Chen and D. L. Peng, *ChemSusChem*, 2017, 10, 4624.
- 33 C. Du, B. Yan and G. W. Yang, *Nano Energy*, 2020, **76**, 105031.