Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Photoelectrochemical Reduction of N_2 to NH_3 under Ambient Conditions through Hierarchical MoSe₂@g-C₃N₄ Heterojunctions

Muhammad Asim Mushtaq,^{ab} Muhammad Arif,^{ab} Xiaoyu Fang,^b Ghulam Yasin,^a Wen Ye,^b Majid Basharat,^a Bo Zhou,^b Shiyu Yang,^b Shengfu Ji,^{*a} and Dongpeng Yan^{*ab}

^aState Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.

^bBeijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China.

*Corresponding authors: Dongpeng Yan Email: <u>yandp@bnu.edu.cn</u>

Shengfu Ji Email: jisf@mail.buct.edu.cn

1. Photoelectrochemical measurements

All PEC measurements were performed at ambient conditions on CHI 760E electrochemical workstation with a gas-tight two-compartment H-type cell separated through a Nafion 211 membrane. Prior to use, the membrane was treated in 5% H₂O₂ and 0.5 M H₂SO₄ aqueous solution, followed by DI water at 80 °C for 1 h and finally rinsed with DI water. For future use, all membranes were immersed in DI water. Pt mesh (1×1 cm²) was utilized as a counter electrode while Ag/AgCl/sat. KCl was performed as a reference electrode. All measured potential was calibrated to the reversible hydrogen electrode (RHE) by Nernst equation ($E_{RHE} = E_{Ag/AgCl} + 0.197 + 0.059$ pH). Xenon (Xe) arc lamp of 300 W from Newport Corporation tailored with an air mass (AM) 1.5 G filter was used for light illumination. The power density of the Xe arc lamp was corrected as 100 mW cm⁻² and calibrated. All photoelectrocatalytic NRR assays were performed in 100 mL N₂ pre-saturated electrolytes, moreover pure N₂ consistently fed into the cathodic chamber of the cell. All applied potential were iR-compensated and geometric surface areas were obtained from current density values.

The average lifetime of the photogenerated electron-hole pairs calculated according to the following equation from the OCVD measurement (Equation 1).¹

$$\tau_n = -\frac{K_B T}{q} \left(\frac{dV_{\alpha}}{dt} \right)^{-1}$$
(1)

where " τ_n " is the average lifetime of the photogenerated electron-hole pairs, " K_B " is the Boltzmann constant, "T" is the temperature (in Kelvin), "q" is the elementary charge of an electron and " V_{α} " is the open-circuit voltage.

2. Determination of NH₃

The NH₃ concentration was quantitatively calculated by the indophenol blue method via UV–vis spectrophotometry. Firstly, 2 mL electrolyte was pipetted from the cathodic chamber after electrolysis of gaseous N₂ and added into 2 mL of 1 M NaOH solution carry $C_7H_6O_3$ (5 wt%) and Na₃C₆H₅O₇ (5 wt%); furthermore, 1 mL of 0.05 M NaClO solution and 0.2 mL of $C_5FeN_6Na_2O\cdot 2H_2O$ (1 wt%) coloring solution were added. Aliquots of electrolytes stained by indophenol blue and incubated for 2 h before UV–vis spectrophotometric measurements. For quantification of synthesized NH₃, a range of standard NH₄Cl solutions was utilized to established calibration curves. Background absorbance spectra of reference solutions (pure electrolytes) were also acquired to nullify the effects of electrolyte.

3. Detection of hydrazine

Watt and Chrisp's method was used to determine the traces of hydrazine (N₂H₄) that exist in 0.1 M KOH electrolyte after electrolysis. A mixture of p-C₉H₁₁NO (5.99 g), HCI (concentrated, 30 mL), and C₂H₅OH (300 mL) was utilized as a color reagent. Series of 5 mL N₂H₄ standard solutions of concentrations 0.0, 0.3, 0.5, 0.7, 0.9, and 1.0 μ g mL⁻¹ in 0.1 M HCl were made to construct calibration curve. Afterward, for each concentration 5 mL of N₂H₄ standard solution was mixed with the 5 mL of the aforementioned color solution and stirred vigorously for 10 min at environmental temperature. The absorbance intensity of the resultant solutions was evaluated carefully at 455 nm, and N₂H₄ yields were predicted with the standard calibration curve. A satisfactory linear connection of absorbance with N₂H₄·H₂O concentration was observed from the calibration curve (Figure S23a).

(2)

4. Determination of NH₃ yield rate and Faradaic efficiency

NH₃ yield rate was estimated through the subsequent equation:

Yield rate = $(C_{NH_3} \times V)/(t \times A)$

where ${}^{"C_{NH_3}"}$ is the concentration of produced NH₃, "V" refers to electrolyte volume, "t" is the reaction time and "A" stands for the working electrode surface area. Considering that three electrons take part to create one NH₃ molecule, the Faradaic efficiency was determined by the equation as follow:

Faradaic efficiency =
$$(3F \times C_{NH_3} \times V)/17 * Q$$
 (3)

where "F" is the Faraday constant and "Q" represents the total charge pass through the electrode during N₂ reduction reaction.

5. ¹⁵N₂ isotope labeling experiments

For the ¹⁵N₂ isotopic labeling, the electrolyte was deaerated by Ar gas for 30 min. Later, feeding gas ¹⁵N₂ was provided into the cathodic chamber for photoelectrolysis at -0.3 V vs. RHE. After 6 h of electrolysis, the electrolyte was collected and kept pH = 7 with 0.5 M H₂SO₄ solution, which was further concentrated through vacuum distillation. After being dissolved in D₂O, the sample was subjected to ¹H nuclear magnetic resonance (¹H NMR) analysis.

6. Computational analysis

All computations were performed in the Vienna ab initio simulation package (VASP) within the framework of the density functional theory (DFT) and the projector augmented plane-wave approach.² Generalized gradient approximation is chosen for the exchange-correlation potential.³ The DFT-D3 technique is used to describe the long-range van der Waals interaction.⁴ The plane wave energy cut-off is fixed at 400 eV. In the iterative solution of the Kohn-Sham equation, the energy constraint is established at 10^{-5} eV. Integration of the Brillouin zone attained at the Gamma point. All the structures are relaxed till the residual forces on the atoms decayed to <0.05 eV Å⁻¹. For all NRR, the Gibbs free energy (ΔG) was described as follows.⁵

$$\Delta G = \Delta E + \Delta E_{ZPE} - T\Delta S \tag{4}$$

where, " ΔE " denoted the energy of adsorption, " ΔE_{ZPE} " represent the zero-point energy changes, T=298.15 K (room temperature), and " ΔS " is the variations in entropy.

Figure S1: XRD pattern of *g*-C₃N₄, MoSe₂ and MoSe₂@*g*-C₃N₄ (7 wt%) hybrid.

Figure S2: SEM images (a and b) MoSe₂, (c) EDS mapping of MoSe₂.

Figure S3: EDS spectrum of MoSe₂.

Figure S4: EDS spectrum of MoSe₂@*g*-C₃N₄ (7 wt%) hybrid.

Figure S5: TEM images of pure *g*-C₃N₄ nanosheets.

Table S1: The average	fluorescence lifetimes	s of g -C ₃ N ₄ and	$MoSe_2@g-C_3N_4$ (7 wt%	ó).
0		0 2 1	200 210	

Samplas	Lifetime $ au$	Pre-exponential	Average lifetime $ au$		
Samples	ns	factors B	ns		
g-C ₃ N ₄	$\tau_1 = 0.44$	B ₁ =95.28	2 5 4 9		
	$\tau_2 = 5.78$	B ₂ =4.72	2.348		
	$\tau_1 = 1.45$	B ₁ =52.98			
$MoSe_2(a)g-C_3N_4 (7 wt\%)$	$\tau_2 = 6.70$	B ₂ =32.64	11.001		
	$\tau_3 = 34.50$	B ₃ =14.38			

Figure S6: Fluorescence lifetime spectra of $g-C_3N_4$ and $MoSe_2@g-C_3N_4$ (7 wt%) heterostructures at an excitation wavelength of 325 nm.

Figure S7: Se 3d spectra of MoSe₂ and MoSe₂@*g*-C₃N₄ hybrid (7 wt%).

Figure S8: Average lifetimes of the photogenerated carriers (τ_n) obtained from the OCVD measurement for *g*-C₃N₄, MoSe₂ and MoSe₂@*g*-C₃N₄ (7 wt%) hybrid.

Figure S9: (a) UV–vis absorption spectra of indophenol assays with NH_4^+ ions in 0.1 M KOH electrolyte after incubated for 2 h at room temperature, (b) Calibration curve used for estimation of NH_3 by NH_4^+ ion concentration.

Figure S10: (a) UV–vis absorption spectra of indophenol assays with NH_4^+ ions in 0.05 M H_2SO_4 electrolyte after incubated for 2 h at room temperature, (b) Calibration curve used for estimation of NH_3 by NH_4^+ ion concentration.

Figure S11: (a) UV–vis absorption spectra of indophenol assays with NH_4^+ ions in 0.1 M Na₂SO₄ electrolyte after incubated for 2 h at room temperature, (b) Calibration curve used for estimation of NH_3 by NH_4^+ ion concentration.

Figure S12 : (a) Chronoamperometric results of electrocatalysis of N_2 by using MoSe₂ in 0.05 M H_2SO_4 electrolyte at potential ranging from 0 V to -0.5 V vs. RHE for 2 h without illumination, (b) Corresponding NH₃ yield rates and Faradaic efficiencies.

Figure S13: (a) Chronoamperometric results of electrocatalysis of N_2 by using MoSe₂ in 0.1 M Na₂SO₄ electrolyte at potential ranging from 0 V to -0.5 V vs. RHE for 2 h without illumination, (b) Corresponding NH₃ yield rates and Faradaic efficiencies.

Figure S14: (a) Chronoamperometric results of electrocatalysis of N_2 by using MoSe₂ in 0.1 M KOH electrolyte at potential ranging from 0 V to -0.5 V vs. RHE for 2 h without illumination, (b) Corresponding NH₃ yield rates and Faradaic efficiencies.

Figure S15: (a) Chronoamperometric results of photoelectrocatalysis of N_2 by using *g*-C₃N₄ in 0.1 M KOH electrolyte at potential ranging from 0 V to -0.5 V vs. RHE for 2 h under illumination, (b) Corresponding NH₃ yield rates and Faradaic efficiencies.

Figure S16: (a) Chronoamperometric results of photoelectrocatalysis of N_2 by using MoSe₂ in 0.1 M KOH electrolyte at potential ranging from 0 V to -0.5 V vs. RHE for 2 h under illumination, (b) Corresponding NH₃ yield rates and Faradaic efficiencies.

Figure S17: (a) Chronoamperometric results of photoelectrocatalysis of N_2 by using MoSe₂@*g*-C₃N₄ (1 wt%) in 0.1 M KOH electrolyte at potential ranging from 0 V to -0.5 V vs. RHE for 2 h under illumination, (b) Corresponding NH₃ yield rates and Faradaic efficiencies.

Figure S18: (a) Chronoamperometric results of photoelectrocatalysis of N₂ by using MoSe₂@*g*-C₃N₄ (3 wt%) in 0.1 M KOH electrolyte at potential ranging from 0 V to -0.5 V vs. RHE for 2 h under illumination, (b) Corresponding NH₃ yield rates and Faradaic efficiencies.

Figure S19: (a) Chronoamperometric results of photoelectrocatalysis of N_2 by using MoSe₂@*g*-C₃N₄ (5 wt%) in 0.1 M KOH electrolyte at potential ranging from 0 V to -0.5 V vs. RHE for 2 h under illumination, (b) Corresponding NH₃ yield rates and Faradaic efficiencies.

Figure S20: (a) Chronoamperometric results of photoelectrocatalysis of N₂ by using MoSe₂@*g*-C₃N₄ (9 wt%) in 0.1 M KOH electrolyte at potential ranging from 0 V to -0.5 V vs. RHE for 2 h under illumination, (b) Corresponding NH₃ yield rates and Faradaic efficiencies.

Figure S21: (a) Chronoamperometric results of photoelectrocatalysis of N₂ by using MoSe₂@*g*-C₃N₄ (11 wt%) in 0.1 M KOH electrolyte at potential ranging from 0 V to -0.5 V vs. RHE for 2h under illumination, (b) Corresponding NH₃ yield rates and Faradaic efficiencies.

Figure S22: Chronoamperometric curves of $MoSe_2@g-C_3N_4$ (7 wt%) at different potentials under illumination.

Figure S23: UV–vis absorption spectra of the electrolytes estimated by the method of Watt and Chrisp after PEC NRR at different potentials.

Figure S24: Structural model of MoSe₂@*g*-C₃N₄ heterojunctions.

Sr. No.	Formulation	Catalysis type	Electrolyte	NH ₃ yield rate	V vs. RHE	FE	V vs. RHE
				$\mu mol h^{-1}$ cm^{-1}	V	%	V
1	MoSe ₂	EC	0.05 M H ₂ SO ₄	0.4	-0.2	0.45	0
2	MoSe ₂	EC	0.1 M Na ₂ SO ₄	0.29	-0.3	1.54	-0.2
3	MoSe ₂	EC	0.1 M KOH	1.19	-0.3	3.03	-0.3
4	g-C ₃ N ₄	PEC	0.1 M KOH	2.21	-0.3	4.48	-0.3
5	MoSe ₂	PEC	0.1 M KOH	2.84	-0.3	5.75	-0.3
6	$\frac{\text{MoSe}_2@g-C_3N_4(1)}{\text{wt \%}}$	PEC	0.1 M KOH	2.89	-0.3	5.79	-0.3
7	$\frac{\text{MoSe}_2@g-C_3N_4(3)}{\text{wt \%}}$	PEC	0.1 M KOH	3.82	-0.3	13.2	-0.3
8	MoSe ₂ @g-C ₃ N ₄ (5 wt %)	PEC	0.1 M KOH	4.7	-0.3	18.7	-0.3
9	MoSe ₂ @g-C ₃ N ₄ (7 wt %)	PEC	0.1 M KOH	7.72	-0.3	28.9	-0.3
10	MoSe ₂ @g-C ₃ N ₄ (9 wt %)	PEC	0.1 M KOH	4.92	-0.3	16.2	-0.3
11	$\frac{\text{MoSe}_2@g-\text{C}_3\text{N}_4}{(11 \text{ wt \%})}$	PEC	0.1 M KOH	4.18	-0.3	6.38	-0.3

Table S2: Formulation name, catalysis type, highest NH₃ yield rate and FE as well as electrolytes under ambient conditions. (Note: electrochemical; EC, photoelectrochemical; PEC).

Table S3: Summary of the representative reports on artificial electrochemical (EC) N_2 fixation under ambient conditions.

Catalyst system	Electrolyte	NH ₃ yield rate	FE (%)	Ref.
		7.72 μmol h ⁻¹ cm ⁻²		
		or		
		2.14 nmol s ⁻¹ cm ⁻²		
$MoSe_2@g-C_3N_4$	0.1 M KOH	or	28.9	This work
		131.47 μg h ⁻¹ cm ⁻²		
		or		
		131.47 μ g h ⁻¹ mg _{cat} ⁻¹		
1T@2H MoSe ₂	0.1 M Na ₂ SO ₄	19.91 μ g h ⁻¹ mg _{cat} ⁻¹	2.82	6
MoSe ₂	0.1 M Na ₂ SO ₄	11.2 μ g h ⁻¹ mg _{cat} ⁻¹	14.2	7
R-WO ₃ NSs	0.1 M HCl	17.28 μ g h ⁻¹ mg _{cat.} ⁻¹	7.0	8
Boron nanosheet	0.1 M Na ₂ SO ₄	13.22 μ g h ⁻¹ mg _{cat.} ⁻¹	4.04	9
AuCuB	0.1 M Na ₂ SO ₄	$13.2 \ \mu g \ h^{-1} \ m g_{cat.}^{-1}$	12.78	10
MoN	0.1 M HCl	$3 \times 10^{-10} \text{ mol s}^{-1} \text{ cm}^{-2}$	1.15	11
Bi ₄ V ₂ O ₁₁ /CeO ₂	0.1 M HCl	23.21 μ g h ⁻¹ mg _{cat.} ⁻¹	10.16	12
Nb ₂ O ₅ nanofiber	0.1 M HCl	43.6 μ g h ⁻¹ mg _{cat.} ⁻¹	9.26	13
Au flowers	0.1 M HCl	$25.57 \ \mu g \ h^{-1} \ m g_{cat.}^{-1}$	6.05	14
VO ₂ hollow	0.1 M No SO	14.95 up h -1 mp -1	2.07	15
Microsphere	$0.1 \text{ M} \text{ Na}_2 \text{SO}_4$	14.85 μ g II · IIIg _{cat.} ·	5.97	
MnO	0.1 M Na ₂ SO ₄	$1.1 \times 10^{-10} \text{ mol s}^{-1} \text{ cm}^{-2}$	8.02	16
MoO ₃	0.1 M HCl	29.43 μ g h ⁻¹ mg _{cat.} ⁻¹	1.9	17
S-doped carbon	$0.1 \text{ MN}_{\odot} \text{ SO}$	19.07 $\mu g h^{-1} m g_{cat.}^{-1}$	7 47	18
nanospheres	$0.1 \text{ M} \text{ Na}_2 \text{SO}_4$		/.4/	
Rh NNs	0.1 M KOH	$7.45 \text{ mg h}^{-1} \text{ cm}^{-2}$	0.21	19
PdRu	0.1 M KOH	$37.23 \text{ mg} \text{ h}^{-1} \text{ mg}^{-1}$	1.85	20
Ag nanosheet	0.1 M HCl	$4.6 \times 10^{-11} \text{ mol s}^{-1} \text{ cm}^{-2}$	4.8	21
Cu Dendritic	0.1 M HCl	$25.63 \ \mu g \ h^{-1} \ mg^{-1}$	15.12	22
Bi Nanosheets	0.1 M Na ₂ SO ₄	23.4 μ g h ⁻¹ mg _{cat.} ⁻¹	19.8	23
CoVP@NiFeV	0.05 M H ₂ SO ₄	$1.6 \ \mu mol \ h^{-1} \ cm^{-2}$	13.8	24
Co-doped (NPC)	0.1 M HCl	$0.97 \ \mu g \ h^{-1} \ mg^{-1}$	4.2	25
Pd _{0.2} Cu _{0.8} /rGO	0.1 M KOH	$2.80 \ \mu g \ h^{-1} \ mg^{-1}$	0.6	26
Au-CNT	0.1 M HCl	57.7 μ g h ⁻¹ cm ⁻²	11.97	27
Carbon nanotubes	0.1 M LiClO ₄	$32.33 \ \mu g \ h^{-1} \ mg^{-1}$	12.50	28
Mn ₃ O ₄ @rGO	0.1 M Na ₂ SO ₄	$17.4 \ \mu g \ h^{-1} \ m g^{-1}$	3.52	29
Pt	2 M KOH	$0.19 \ \mu g \ h^{-1} \ m g^{-1}$	0.01	30
Re ₂ MnS ₆	0.1 M Na ₂ SO ₄	$3.78 \ \mu g \ h^{-1} \ m g_{cat}^{-1}$	17.42	31
NbO ₂	0.05 M H ₂ SO ₄	$11.6 \ \mu g \ h^{-1} \ m g_{cat.}^{-1}$	32	32

Catalyst system	Electrolyte	NH ₃ yield rate	FE (%)	Ref.
$MoSe_2@g-C_3N_4$	0.1 M KOH	7.72 μmol h ⁻¹ cm ⁻²	28.9	This work
FeAl@3D Graphene	Water	25.3 μ mol h ⁻¹ g ⁻¹	_	33
Bi ₅ O ₇ I nanosheets	0.1 M Na ₂ SO ₄	111.5 μ mol h ⁻¹ g ⁻¹	5.1	34
BiO quantum dots	Water	$1226 \text{ mmol } h^{-1} \text{ g}^{-1}$	_	35
Bi ₅ O ₇ Br nanotubes	Water	1380 mmol h ⁻¹ g ⁻¹	2.3	36
Bi ₂ MoO ₆	Water and	1300 µmol h ⁻¹ g ⁻¹	0.73	37
BiOCl	0.01 M NaClO ₄	$4.62 \ \mu mol \ h^{-1} \ g^{-1}$	4.3	38
Mo-doped W ₁₈ O ₄₉	0.5 M Na ₂ SO ₄	195.5 μ mol h ⁻¹ g ⁻¹	0.33	39
S, N co-doped (BiO) ₂ CO ₃	CH ₃ CN and water	38.2 μ mol h ⁻¹ g ⁻¹	0.006	40
BiOBr nanosheets	0.5 M Na ₂ SO ₄	$10.42 \text{ mmol } h^{-1} \text{ g}^{-1}$	0.23	41
Ultrathin MoS ₂	Ethanol and water	325 μmol h ⁻¹ g ⁻¹	_	42

Table S4: Summary of the representative reports on artificial photochemical (PC) N_2 fixation under ambient conditions.

References

- 1. J. Bisquert, A. Zaban, M. Greenshtein and I. Mora-Seró, *Journal of the American Chemical Society*, 2004, **126**, 13550-13559.
- 2. G. Kresse and D. Joubert, *Physical review b*, 1999, **59**, 1758.
- 3. J. P. Perdew, K. Burke and M. Ernzerhof, *Physical Review Letters*, 1996, 77, 3865.
- 4. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, *The Journal of chemical physics*, 2010, **132**, 154104.
- 5. X. Yu, P. Han, Z. Wei, L. Huang, Z. Gu, S. Peng, J. Ma and G. Zheng, *Joule*, 2018, **2**, 1610-1622.
- 6. Z. Wu, R. Zhang, H. Fei, R. Liu, D. Wang and X. Liu, *Applied Surface Science*, 2020, **532**, 147372.
- 7. L. Yang, H. Wang, X. Wang, W. Luo, C. Wu, C.-a. Wang and C. Xu, *Inorganic Chemistry*, 2020, DOI: 10.1021/acs.inorgchem.0c02058.
- 8. W. Kong, R. Zhang, X. Zhang, L. Ji, G. Yu, T. Wang, Y. Luo, X. Shi, Y. Xu and X. Sun, *Nanoscale*, 2019, **11**, 19274-19277.
- 9. X. Zhang, T. Wu, H. Wang, R. Zhao, H. Chen, T. Wang, P. Wei, Y. Luo, Y. Zhang and X. Sun, *ACS Catalysis*, 2019, **9**, 4609-4615.
- 10. Z. Wang, J. Niu, Y. Xu, L. Wang, H. Wang and H. Liu, *ACS Sustainable Chemistry & Engineering*, 2020, **8**, 12588-12594.
- 11. L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A. M. Asiri, L. Chen, B. Tang and X. Sun, *Advanced Materials*, 2018, **30**, 1800191.
- 12. C. Lv, C. Yan, G. Chen, Y. Ding, J. Sun, Y. Zhou and G. Yu, *Angewandte Chemie International Edition*, 2018, **57**, 6073-6076.
- 13. J. Han, Z. Liu, Y. Ma, G. Cui, F. Xie, F. Wang, Y. Wu, S. Gao, Y. Xu and X. Sun, *Nano Energy*, 2018, **52**, 264-270.
- 14. Z. Wang, Y. Li, H. Yu, Y. Xu, H. Xue, X. Li, H. Wang and L. Wang, *ChemSusChem*, 2018, **11**, 3480-3485.
- 15. R. Zhang, H. Guo, L. Yang, Y. Wang, Z. Niu, H. Huang, H. Chen, L. Xia, T. Li and X. Shi, *ChemElectroChem*, 2019, **6**, 1014-1018.
- 16. Z. Wang, F. Gong, L. Zhang, R. Wang, L. Ji, Q. Liu, Y. Luo, H. Guo, Y. Li and P. Gao, *Advanced Science*, 2019, **6**, 1801182.
- 17. J. Han, X. Ji, X. Ren, G. Cui, L. Li, F. Xie, H. Wang, B. Li and X. Sun, *Journal of Materials Chemistry A*, 2018, **6**, 12974-12977.
- 18. L. Xia, X. Wu, Y. Wang, Z. Niu, Q. Liu, T. Li, X. Shi, A. M. Asiri and X. Sun, *Small Methods*, 2019, **3**, 1800251.
- 19. H.-M. Liu, S.-H. Han, Y. Zhao, Y.-Y. Zhu, X.-L. Tian, J.-H. Zeng, J.-X. Jiang, B. Y. Xia and Y. Chen, *Journal of Materials Chemistry A*, 2018, **6**, 3211-3217.
- 20. H. Wang, Y. Li, C. Li, K. Deng, Z. Wang, Y. Xu, X. Li, H. Xue and L. Wang, *Journal of Materials Chemistry A*, 2019, **7**, 801-805.
- 21. H. Huang, L. Xia, X. Shi, A. M. Asiri and X. Sun, *Chemical Communications*, 2018, **54**, 11427-11430.
- 22. C. Li, S. Mou, X. Zhu, F. Wang, Y. Wang, Y. Qiao, X. Shi, Y. Luo, B. Zheng, Q. Li and X. Sun, *Chemical Communications*, 2019, **55**, 14474-14477.
- 23. J. Wang, Y. Ren, M. Chen, G. Cao, Z. Chen and P. Wang, *Journal of Alloys and Compounds*, 2020, 154668.

- 24. M. Arif, G. Yasin, L. Luo, W. Ye, M. A. Mushtaq, X. Fang, X. Xiang, S. Ji and D. Yan, *Applied Catalysis B: Environmental*, 2020, **265**, 118559.
- 25. P. Song, H. Wang, L. Kang, B. Ran, H. Song and R. Wang, *Chemical Communications*, 2019, **55**, 687-690.
- 26. M. M. Shi, D. Bao, S. J. Li, B. R. Wulan, J. M. Yan and Q. Jiang, *Advanced Energy Materials*, 2018, **8**, 1800124.
- 27. X. Zhao, Z. Yang, A. V. Kuklin, G. V. Baryshnikov, H. Agren, X. Zhou and H. Zhang, *ACS Applied Materials & Interfaces*, 2020, DOI: 10.1021/acsami.0c11487.
- 28. J. Zhao, B. Wang, Q. Zhou, H. Wang, X. Li, H. Chen, Q. Wei, D. Wu, Y. Luo and J. You, *Chemical Communications*, 2019, **55**, 4997-5000.
- 29. H. Huang, F. Gong, Y. Wang, H. Wang, X. Wu, W. Lu, R. Zhao, H. Chen, X. Shi, A. M. Asiri, T. Li, Q. Liu and X. Sun, *Nano Research*, 2019, **12**, 1093-1098.
- 30. B. L. Sheets and G. G. Botte, *Chemical Communications*, 2018, 54, 4250-4253.
- 31. Y. Fu, T. Li, G. Zhou, J. Guo, Y. Ao, Y. Hu, J. Shen, L. Liu and X. Wu, *Nano Letters*, 2020, **20**, 4960-4967.
- 32. L. Huang, J. Wu, P. Han, A. M. Al Enizi, T. M. Almutairi, L. Zhang and G. Zheng, *Small Methods*, 2019, **3**, 1800386.
- 33. Y. Lu, Y. Yang, T. Zhang, Z. Ge, H. Chang, P. Xiao, Y. Xie, L. Hua, Q. Li and H. Li, *ACS nano*, 2016, **10**, 10507-10515.
- 34. Y. Bai, L. Ye, T. Chen, L. Wang, X. Shi, X. Zhang and D. Chen, *ACS applied materials & interfaces*, 2016, **8**, 27661-27668.
- 35. S. Sun, Q. An, W. Wang, L. Zhang, J. Liu and W. A. Goddard III, *Journal of Materials Chemistry A*, 2017, **5**, 201-209.
- 36. S. Wang, X. Hai, X. Ding, K. Chang, Y. Xiang, X. Meng, Z. Yang, H. Chen and J. Ye, *Advanced Materials*, 2017, **29**, 1701774.
- 37. Y. Hao, X. Dong, S. Zhai, H. Ma, X. Wang and X. Zhang, *Chemistry–A European Journal*, 2016, **22**, 18722-18728.
- 38. H. Li, J. Shang, J. Shi, K. Zhao and L. Zhang, *Nanoscale*, 2016, **8**, 1986-1993.
- 39. N. Zhang, A. Jalil, D. Wu, S. Chen, Y. Liu, C. Gao, W. Ye, Z. Qi, H. Ju and C. Wang, *Journal of the American Chemical Society*, 2018, **140**, 9434-9443.
- 40. P. Ding, J. Di, X. Chen, M. Ji, K. Gu, S. Yin, G. Liu, F. Zhang, J. Xia and H. Li, *ACS Sustainable Chemistry & Engineering*, 2018, **6**, 10229-10240.
- 41. H. Li, J. Shang, Z. Ai and L. Zhang, *Journal of the American Chemical Society*, 2015, **137**, 6393-6399.
- 42. S. Sun, X. Li, W. Wang, L. Zhang and X. Sun, *Applied Catalysis B: Environmental*, 2017, **200**, 323-329.