A high active CH$_4$ catalyst correlating with Solid oxide fuel cells anode performance

Yuanhui Sua, Tao Weia*, Yining Lia, Baoyi Yina, Yu Huana*, Dehua Donga, Xun Hua, and Bolong Huangb*

a School of Materials Science and Engineering, University of Jinan, 336 Nanxinzhuan West Road, Jinan, Shandong 250022, P. R. China. E-mail: mse_weit@ujn.edu.cn; mse_huany@ujn.edu.cn

b Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China. E-mail: bhuang@polyu.edu.hk
Fig. 1. The XRD patterns of P-SZMO, H₂ reduced SZMO, LSGM and the mixture of P-SZMO+LSGM after firing at 1100 °C for 10 hours.

Fig. 2. The particle size of SZMO powder evaluated by SEM with the scale bar at (a) 20 μm and (b) at 3 μm, respectively.
Fig. S3. The final products of CH₄ oxidization by SZMO anode tested from 650 to 800 °C.

Fig. S4. The half-cell EIS with Ni-SDC and SZMO as symmetric electrodes exposing in H₂ and tested at 800 and 850 °C.