Electronic Supplementary Information

Charge Separation in Hybrid Metal-Organic Framework Films for Enhanced Catalytic CO₂ Conversion

Yi Guo,^{a,b} Bin Gao,^{a,c} Zheng Deng,^b Yu Liu,^{a,d} Xinsheng Peng,^{*,b} Yanli Zhao^{*,a}

^aDivision of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
^bState Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China

^cCollege of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, Nanjing University of Aeronautics and Astronautics, 211106, Nanjing, China

^{d.}Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Ministry of Education), College of Chemistry, Tianjin Normal University, Tianjin, 300387, China

Email: zhaoyanli@ntu.edu.sg, pengxinsheng@zju.edu.cn

Materials and chemicals:

2-Aminoethanol (NH₂-CH₂CH₂OH, AE), copper nitrate (Cu(NO₃)₂•3H₂O), N,Ndimethylformamide (DMF), and [6,6]-phenyl C₆₁ butyric acid methyl ester (PC₆₁BM) were purchased from Sigma-Aldrich. Epichlorohydrin, 1,2-epoxybutane, propylene oxide, styrene oxide, tetrabutylammonium bromide (TBAB), and *meso*-tetra(4-carboxyphenyl)porphine (TCPP) were purchased from Tokyo Chemical Industry Co., Ltd. Acetonitrile (CH₃CN), ethanol, and toluene were purchased from Fisher Scientific Co. Ltd. Acetonitrile-d₃ (CD₃CN) was purchased from Cambridge Isotope Laboratories, Inc. Polycarbonate (PC) membranes (Whatman) with an average pore size of 200 nm were employed for the filtration. Ultrapure water of 18.2 MΩ produced by a Millipore direct-Q system was used throughout the experiments.

Synthesis of PC₆₁BM/CuTCPP films:

Copper hydroxide nanostrands (CHNs) were synthesized as reported previously.^{1,2} AE aqueous solution (1.4 mM) was quickly mixed with equal volume $Cu(NO_3)_2$ aqueous solution under stirring and aged at ambient temperature for at least 12 h to form CHN colloidal solution. PC₆₁BM toluene solution (12.5, 25, 50, 75 or 100 µL of 1 mg/mL) was dispersed into methanol (5 mL), and then the mixture was poured into CHNs solution (15 mL) under stirring for 1 min. The PC₆₁BM/CHNs composite film was obtained by filtering the fore-mentioned mixture solution onto PC membrane followed by transferring it onto glass with the assistance of ethanol. Subsequently, CHNs/PC₆₁BM film was placed in 0.5 mM TCPP DMF/ethanol (volume ratio, 3/1) solution and heated at 65 °C for 24 h. PC₆₁BM/CuTCPP film was successfully prepared and named as PC₆₁BM/CuTCPP-0.4%, PC₆₁BM/CuTCPP-0.9%, PC₆₁BM/CuTCPP-1.8%, PC₆₁BM/CuTCPP-2.7% and PC₆₁BM/CuTCPP-3.5%, respectively. After washing with DMF/ethanol (volume ratio, 3/1) solution for 3 times and drying, PC₆₁BM/CuTCPP films were ready for the following tests.

To prepare PC₆₁BM/CuTCPP film with different thickness, PC₆₁BM toluene solution (100 and 150 μ L, 1 mg/mL) was dispersed into methanol (5 mL), and then the mixture was poured into CHN solution (30 and 45 mL) under stirring for 1 min. The mixture was filtered to obtain PC₆₁BM/CHNs composite film. After soaking in 0.5 mM TCPP DMF/ethanol (volume ratio,

3/1) solution and heated at 65 °C for 24 h, PC₆₁BM/CHNs composite film was converted to PC₆₁BM/CuTCPP composite film with thickness of 6 µm and 11 µm, respectively.

Characterizations:

The morphologies of the as-prepared films were characterized by scanning electronic microscopy (SEM) (JSM-7600F). The phase of the films was recorded by powder X-ray diffraction (XRD) at 0.02 degree step using Rigaku MiniFlex 600 with Cu K α radiation. Fourier transform infrared (FT-IR) spectroscopy was measured by Shimadzu IRAffinity-1S using a KBr pellet in a range of 600-2000 cm⁻¹. Raman spectra were recorded by Thermo Fisher Scientific DXR Raman Microscope. Thermogravimetric analysis (TGA) was conducted on TA-Q500 under N₂ atmosphere. Zeta potentials of CHNs and PC₆₁BM were characterized by Zetadizer3000HSA. XPS and UPS were measured through SPECSLab and Kratos SUPRA. Photoluminescence (PL) spectra of PC₆₁ BM/CuTCPP films were measured on Shimadzu RF-5301PC with exciting light of 350 nm.

Electrochemical characterization:

The working electrode was $PC_{61}BM/CuTCPP$ film on ITO glass. The electrochemical measurements were conducted on CHI 760e electrochemical workstation, with Pt plate as the counter electrode and saturated calomel electrode. The tests were performed in phosphatic buffer solution (pH=7) at room temperature.

Photocatalysis experiments:

The CO₂ conversion reaction was conducted in a Schlaker reaction tube. The as-prepared film (1 mg) was soaking in epoxide solution (1.5 mL) with CH₃CN as solvent. The epoxide concentration was fixed as 1 mmol/1.5 mL. TBAB was employed as co-catalyst with weight of 0.0325g. A CO₂ balloon was connected to Schlaker reaction tube to purge CO₂ into the reaction system at 1 atm. Then, the system was placed under Xeon lamp (Perfectlight, 100 mW/cm², 400 nm $< \lambda < 800$ nm) for several hours. The cycloaddition products were calculated based on ¹H NMR analysis (Bruker Avance 300).

Figure S1. Zeta potential of (a) CHNs and (b) PC₆₁BM.

Figure S2. SEM images for surface of (a) CHNs film, (b) CHNs/PC₆₁BM-0.4% film, (c) CHNs/PC₆₁BM-0.9% film, (d) CHNs/PC₆₁BM-1.8% film, (e) CHNs/PC₆₁BM-2.7%, and (f) CHNs/PC₆₁BM-3.5% film.

Figure S3. (a) Powder XRD patterns and (b) FTIR spectra of CHNs/PC₆₁BM films.

Figure S4. XPS O1s spectra of (a) CHNs, (b) CHNs/PC₆₁BM-0.4%, (c) CHNs/PC₆₁BM-0.9%, (d) CHNs/PC₆₁BM-1.9%, (e) CHNs/PC₆₁BM-2.7%, and (f) CHNs/PC₆₁BM-3.5%.

Figure S5. SEM images for surface of (a) PC₆₁BM/CuTCPP-0.4% film, (b) PC₆₁BM/CuTCPP-0.9% film, (c) PC₆₁BM/CuTCPP-2.7% film, and (d) PC₆₁BM/CuTCPP-3.5% film.

Figure S6. (a) AFM image of 2D $PC_{61}BM/CuTCPP-1.8\%$ sheet. (b) Height of $PC_{61}BM/CuTCPP-1.8\%$ sheet.

Figure S7. TEM image of PC₆₁BM/CuTCPP-1.8% sheet.

Figure S8. SEM images for cross-section of (a) $PC_{61}BM/CuTCPP-0.4\%$ film, (b) $PC_{61}BM/CuTCPP-1.8\%$ film, (c) $PC_{61}BM/CuTCPP-2.7\%$ film, and (d) $PC_{61}BM/CuTCPP-3.5\%$ film.

Figure S9. Powder XRD patterns of $PC_{61}BM/CuTCPP$ films with various $PC_{61}BM$ concentrations.

Figure S10. FT-IR spectra of PC₆₁BM/CuTCPP films with various PC₆₁BM concentrations.

Figure S11. Raman spectra of PC₆₁BM/CuTCPP films with various PC₆₁BM concentrations.

Figure S12. XPS O1s spectra of (a) PC61BM/CuTCPP-0.4% film, (b) PC61BM/CuTCPP-0.9% film, (c) PC61BM/CuTCPP-2.7% film, (d) PC61BM/CuTCPP-3.5% film, (e) CuTCPP film, and (f) PC61BM.

Figure S13. (a) XPS N1s spectrum of CuTCPP film. The two major peaks indicate that there are two status N atoms, as shown in (b).

Figure S14. (a) UPS, (b) VBM and (c) UV-vis-DRS of PC₆₁BM. (d) Mott-Schottky plot and (e) UV-vis-DRS of CuTCPP film. (f) Band structures of PC₆₁BM and CuTCPP film.

Figure S15. SEM images of (a) surface and (b) cross-section of $PC_{61}BM/CuTCPP-1.8\%-6 \mu m$, and (c) surface and (d) cross-section of $PC_{61}BM/CuTCPP-1.8\%-11 \mu m$.

Figure S16. (a) Powder XRD patterns, (b) FTIR spectra, and Raman spectra of $PC_{61}BM/CuTCPP-1.8\%-6 \ \mu m$ and $PC_{61}BM/CuTCPP-1.8\%-11 \ \mu m$. XPS O1s spectra of (d) $PC_{61}BM/CuTCPP-1.8\%-6 \ \mu m$ and (e) $PC_{61}BM/CuTCPP-1.8\%-11 \ \mu m$.

Figure S17. (a) SEM image and (b) powder XRD pattern of PC₆₁BM/CuTCPP-1.8% film after the catalysis.

Figure S18. (a) FTIR spectrum, (b) Raman spectrum, (c) XPS O1s spectrum, and (d) TGA curve of PC₆₁BM/CuTCPP-1.8% film after the catalysis.

Table S1. Cycloaddition of CO_2 with epoxides catalyzed by $PC_{61}BM/CuTCPP-1.8\%$ film with various thickness.

Catalyst	Epoxide	Product	Conversion (%)	TOF (h ⁻¹)
РС61ВМ/CuTCPP- 1.8%-6 µm	CI	CI CI	91.2	32.4
PC61BM/CuTCPP- 1.8%-11 μm	CI		93.2	34.1

	Catalyst	Т (°С)	CO ₂ pressure (bar)	Conversion (%)	TOF (h ⁻¹)	Ref.
1	$\{[Ni_4L(\mu_3\text{-}OH)_2(H_2O)_6]\cdot 2(H_2O)\cdot DMA\}_n$	100	10	99	1320	S3
2	MOF-Zn-1	100	10	97	83.25	S4
3	Zn(PZDC)(ATZ)	90	10	98	33.81	S5
4	MIL-101-tzmOH-Br	80	10	97	18	S6
5	Ni@UiO-66-NH ₂	70	10	96.61	46	S 7
6	mesoCu@Al-bpydc	60	10	98.7	5.88	S 8
7	Zn(Bmic)(AT)	80	5	98	30.1	S9
8	JLU-LiuU21	35	1.5	99	4.74	S10
9	ZnTCPP⊂(Br ⁻)Etim-UiO-66	140	1	86.9	6.53	S11
10	$\{(Me_2NH_2)_2 \cdot [Zn_8(Ad)_4(DABA)_6O] \cdot 7DMF\}_n$	100	1	99	50.4	S12
11	[Zn ₂ (TCA)(BIB) _{2.5}]·(NO ₃)	80	1	99	49.5	S13
12	Co-MOF	80	1	93	31	S14
13	FJI-H14	80	1	95	8.25	S15
14	MIL-101(Cr)	80	1	92	7.67	S16
15	$\label{eq:1.1} (\{[Ni_3Th_6(m_3-O)_4(m_3-O)_4(m_3-O)_4(m_3-O)_{12}]\cdot(OH)_6\cdot 5DMF\cdot 2H_2O\}_n$	70	1	99	3.3	S17
16	FJI-C10	60	1	87	20.58	S18
17	MIL-101-IP	50	1	99	2.5	S19
18	${Na[Zn_{1.5}(\mu_4-O)(L)]}_n$	50	1	98	1.63	S20
19	CuMOF	25	1	85	8.85	S21
20	Cu_2L_1	25	1	88	9.17	S22
21	PC ₆₁ BM/CuTCPP-1.8%	25	1	92.4	36.0	This work

Table S2. Catalysis performance of MOF-based catalysts on the CO₂ cycloaddition with epichlorohydrin.

References

(S1) Y. Guo, Y. Ying, Y. Mao, X. Peng and B. Chen, *Angew. Chem. Int. Ed.* 2016, 55, 15120.
(S2) Y. Mao, J. Li, W. Cao, Y. Ying, P. Hu, Y. Liu, L. Sun, H. Wang, C. Jin and X. Peng, *Nat. Commun.* 2014, 5, 5532.

- (S3) C. Y. Gao, Y. Yang, J. H. Liu and Z. M. Sun, Dalton Trans. 2019, 48, 1246.
- (S4) J. W. Lan, M. S. Liu, X. Y. Lu, X. Zhang and J. M. Sun, *ACS Sustain. Chem. Eng.* 2018, 6, 8727.
- (S5) Y. X. Li, X. Zhang, P. Xu, Z. M. Jiang and J. M. Sun, *Inorg. Chem. Front.* 2019, 6, 317.
 (S6) L. J. Zhou, W. Sun, N. N. Yang, P. Li, T. Gong, W. J. Sun, Q. Sui and E. Q. Gao, *ChemSusChem* 2019, 12, 2202.
- (S7) M. Singh, P. Solanki, P. Patel, A. Mondal and S. Neogi, Inorg. Chem. 2019, 58, 8100.
- (S8) G. G. Chang, X. C. Ma, Y. X. Zhang, L. Y. Wang, G. Tian, J. W. Liu, J. Wu, Z. Y. Hu, X.Y. Yang and B. L. Chen, *Adv. Mater.* 2019, **31**, 1904969.
- (S9) Y. X. Li, X. Zhang, J. W. Lan, P. Xu and J. M. Sun, Inorg. Chem. 2019, 58, 13917.
- (S10) J. Gu, X. Sun, X. Liu, Y. Yuan, H. Shan and Y. Liu, Inorg. Chem. Front. 2020, 7, 4517.
- (S11) J. Liang, Y. Q. Xie, Q. Wu, X. Y. Wang, T. T. Liu, H. F. Li, Y. B. Huang and R. Cao, *Inorg. Chem.* 2018, **57**, 2584.
- (S12) H. M. He, Q. Q. Zhu, J. N. Zhao, H. M. Sun, J. Chen, C. P. Li and M. Du, *Chem. Eur. J.* 2019, **25**, 11474.
- (S13) C. Yao, S. L. Zhou, X. J. Kang, Y. Zhao, R. Yan, Y. Zhang and L. L. Wen, *Inorg. Chem.* 2018, **57**, 11157.
- (S14) B. Ugale, S. Kumar, T. J. D. Kumar and C. M. Nagaraja, Inorg. Chem. 2019, 58, 3925.
- (S15) L. F. Liang, C. P. Liu, F. L. Jiang, Q. H. Chen, L. J. Zhang, H. Xue, H. L. Jiang, J. J. Qian, D. Q. Yuan and M. C. Hong, *Nat. Commun.* 2017, **8**, 1233.
- (S16) E. Akimana, J. Wang, N. V. Likhanova, S. Chaemchuen and F. Verpoort, *Catalysts* 2020, **10**, 453.
- (S17) H. Xu, C. S. Cao, H. S. Hu, S. B. Wang, J. C. Liu, P. Cheng, N. Kaltsoyannis, J. Li and B. Zhao, *Angew. Chem. Int. Ed.* 2019, **58**, 6022.
- (S18) J. Liang, Y. Q. Xie, X. S. Wang, Q. Wang, T. T. Liu, Y. B. Huang and R. Cao, *Chem. Commun.* 2018, **54**, 342.
- (S19) B. Aguila, Q. Sun, X. L. Wang, E. O'Rourke, A. M. Al-Enizi, A. Nafady and S. Q. Ma, *Angew. Chem. Int. Ed.* 2018, **57**, 10107.
- (S20) W. Z. Qiao, T. Q. Song and B. Zhao, Chinese J. Chem. 2019, 37, 474.
- (S21) P. Z. Li, X. J. Wang, J. Liu, J. S. Lim, R. Q. Zou and Y. L. Zhao, *J. Am. Chem. Soc.* 2016, **138**, 2142.
- (S22) P. Z. Li, X. J. Wang, J. Liu, H. S. Phang, Y. X. Li and Y. L. Zhao, *Chem. Mater.* 2017, **29**, 9256.