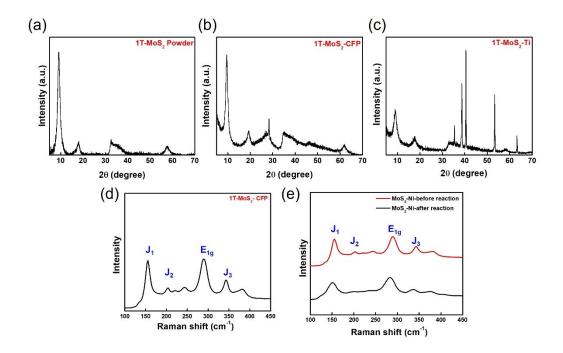
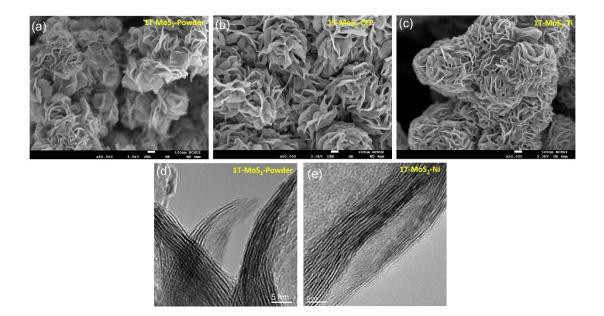
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Enhanced N₂ Affinity of 1T-MoS₂ with Unique Pseudo Six-membered Ring Consisting of N—Li—S—Mo—S—Mo for High Ambient Ammonia Electrosynthesis Performance Shivaraj B. Patil,^{1#} Hung-Lung Chou,^{2#} Yu-Mei Chen,¹ Shang-Hsien Hsieh,³ Chia-Hao Chen,³ Chia-Che Chang,¹ Shin-Ren Li,¹ Yi-Cheng Lee,¹ Ying-Sheng Lin,¹ Hsin Li,¹ Yuan Jay Chang,¹ Ying-Huang Lai,¹ Di-Yan Wang^{1*} ¹ Department of Chemistry, Tunghai University, Taichung 40704, Taiwan ² Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan


³ National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan

[#]Shivaraj B. Patil and Hung-Lung Chou are contributed equally to this work


Corresponding author: diyanwang@thu.edu.tw

	<i>E_{ad}</i> (eV)	E_{ad} (eV)	Distance (S-H) (Å)	
S site of MoS ₂	0.402	0.472	1.381	
(with Li-S)	0.492	0.473	(± 0.02 Å)	
S site of MoS ₂	0.024	0.023	1.383	
(without Li-S)	0.034	0.033	(± 0.02 Å)	

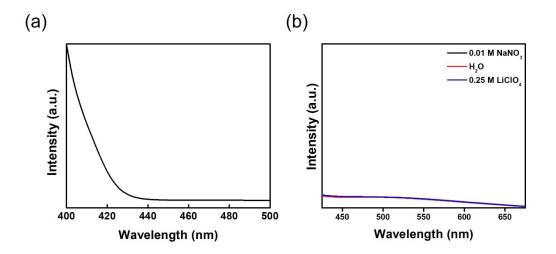

Table S1. Adsorption energies and optimized geometries calculation of H in MoS_2 with Liand without Li systems

Figure S1. (a-c) XRD patterns of $1T-MoS_2$ -powder, $1T-MoS_2$ -CFP and $1T-MoS_2$ -Ti, respectively; (d-e) Raman spectra of $1T-MoS_2$ -CFP and $1T-MoS_2$ -Ni, respectively. Similar kind of XRD pattern having sharp peaks was also obtained for $1T-MoS_2$ powder when synthesized without any substrates. Therefore, it is evident that Ni foil exhibits duel nature, that is, acting as suitable substrate and amorphization agent. Meanwhile, Raman spectra confirms the formation of distorted amorphous $1T-MoS_2$ and maintains same phase after the reactions also.

Figure S2. (a-c) SEM images of 1T-MoS₂-powder, 1T-MoS₂-CFP and 1T-MoS₂-Ti, respectively; (d-e) HR-TEM image of 1T-MoS₂-powder and 1T-MoS₂-Ni, respectively. These 1T-MoS₂ catalysts exhibited high crystalline beautiful nanoflower morphology. FE-SEM images further substantiate the significant role of Ni in amorphization of 1T-MoS₂. The d-spacing calculated from the HR-TEM corresponds to 1T phase of MoS₂. HR-TEM image reveals the formation of defective amorphous 1T-MoS₂.

Figure S3. (a) UV-vis absorption spectra of the electrolyte stained with Watt and Chrisp indicator after NRR electrolysis using 1T-MoS₂-Ni at -0.3 V. The result rules out the formation of hydrazine and signifies the formation of NH₃ only. (b) UV-vis absorption spectra of the electrolytes stained with Griess reagent (equal volumes of electrolyte and reagent were mixed and read the absorbance at 540 nm after 15 min).

To validate the results are real, many controlled experiments were carried out. **Figure S10 (a)** shows UV-vis absorption spectra of pure electrolyte with purging N₂ and Ar gas stained with indophenol indicator. **Figure S10 (b)** shows the gas chromatography of N₂ gas. It was found that there is no contamination either from the electrolyte or gas. **Figure 11S (a & b)** show time dependent current curves and corresponding UV-Vis spectra of 1T-MoS₂-Ni using carbon as a counter electrode. The efficiency remains almost same signifying the non-interference of Pt ions. **Figure 11S (c & d)** show time dependent current curves and corresponding UV-Vis spectra of 1T-MoS₂-Ni using UV-Vis spectra of 1T-MoS₂-Ni using Li₂SO₄ electrolyte. Unbowed efficiency indicates the insignificant effect of anions on the performance of 1T-MoS₂-Ni. No ammonia was detected when Ni with and without catalyst exposed to chronoamperometric tests in Ar atmosphere [**Figure 11S (e & f)**] confirming that no contamination originated from electrode.

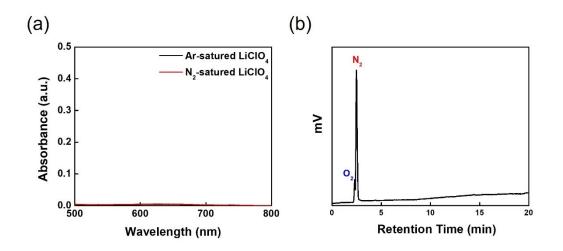


Figure S4. (a) UV-vis absorption spectra of pure electrolyte with purging N_2 and Ar gas stained with indophenol indicator. It was found that there is no contamination either from the electrolyte. (b) Gas chromatography of N_2 gas.

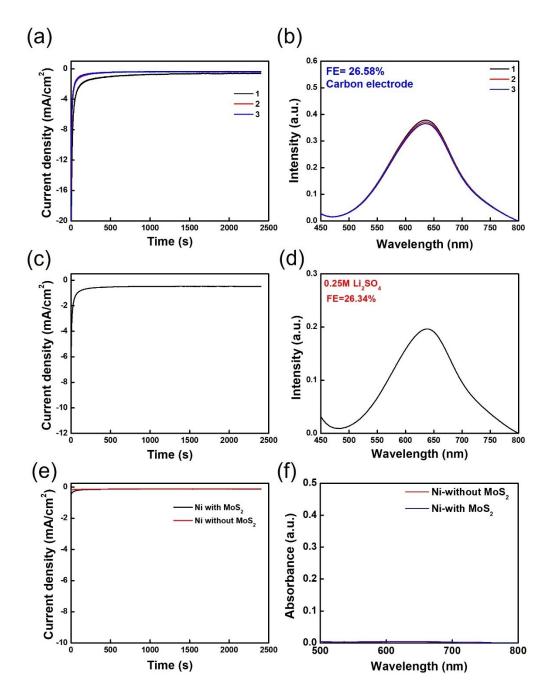


Figure S5. (a & b) Time dependent current curves and corresponding UV-vis absorption spectra of $1T-MoS_2$ -Ni for consecutive cycles using carbon rod as a counter electrode to study the effect of Pt counter electrode in H-type cell; (c & d) Time dependent current curves and corresponding UV-vis absorption spectra of $1T-MoS_2$ -Ni operated in 0.25 M Li₂SO₄ electrolyte; (e & f) Time dependent current curves (Ar atmosphere) and corresponding UV-vis absorption spectra of Ni with and without MoS₂ at -0.3V vs RHE.

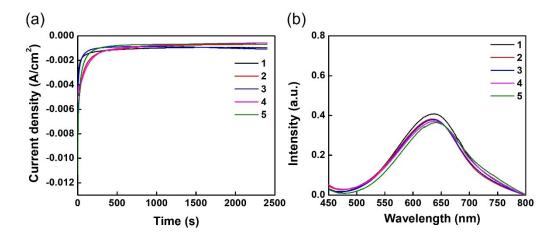


Figure S6. (a) Time dependent current curves of $1T-MoS_2$ -Ni for consecutive cycles. (b) UVvis absorption spectra of the electrolyte stained with indophenol indicator after NRR electrolysis using $1T-MoS_2$ -Ni for consecutive cycles.

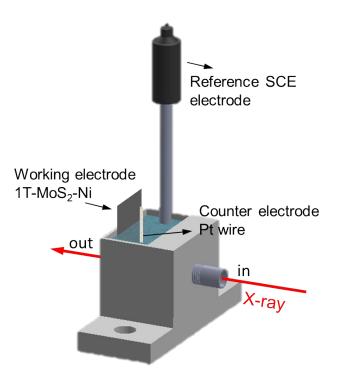


Figure S7. The setup of electrochemical reaction of in-situ XRD- measurement.

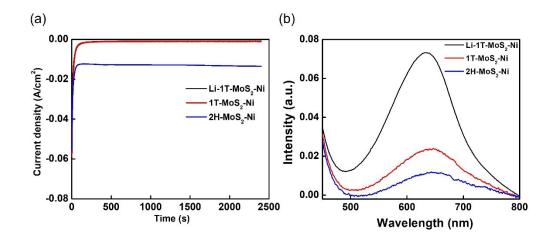


Figure S8. (a) Time dependent current curves of different catalysts operated in 0.25 M Na₂SO₄ electrolyte. (b) UV-vis absorption spectra of the corresponding electrolytes stained with indophenol indicator.

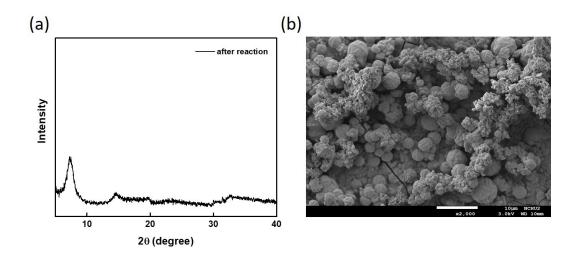
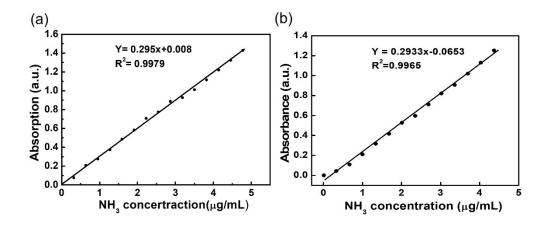



Figure S9: (a-b) XRD pattern and SEM image of 1T-MoS₂ after NRR, respectively.

Figure S10. The calibration curves used to quantify the NH₃ generated during electrolysis for (a) LiClO₄ and (b)Na₂SO₄ electrolytes, respectively.

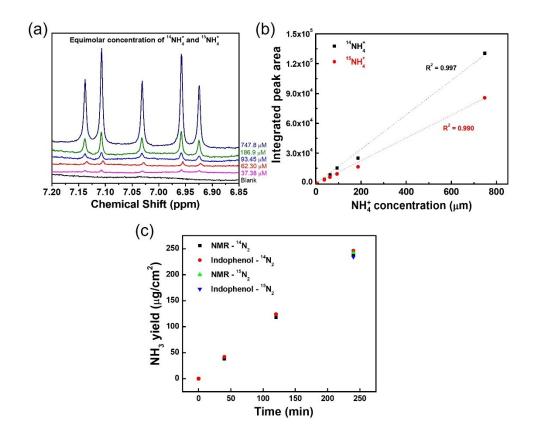
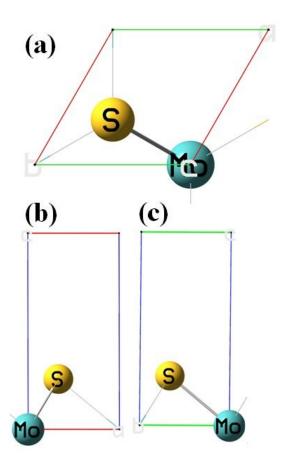
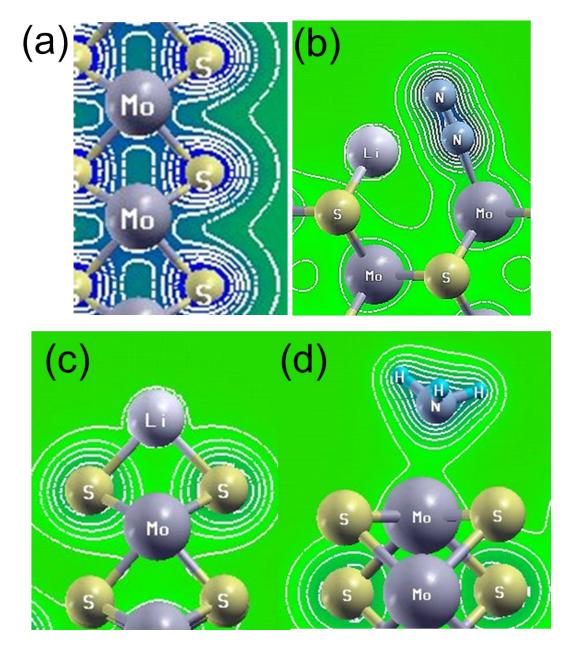
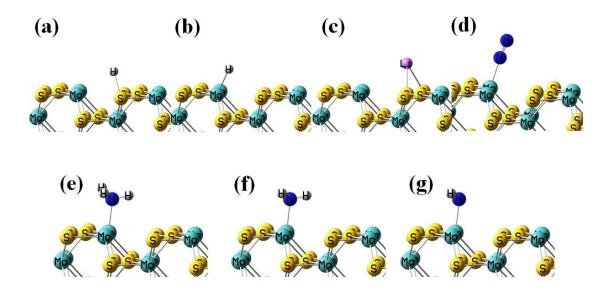


Figure S11. (a) NMR spectra of equimolar concentrations of ¹⁴NH₄⁺ and ¹⁵NH₄⁺. The slight deviation of chemical shift can be attributed to difference s in pH, volume and/or temperature.
(b) NMR based calibration curve used to quantify the NH₃ generated during electrolysis. (c) NH₃ yield obtained by both indophenol and NMR over different periods.

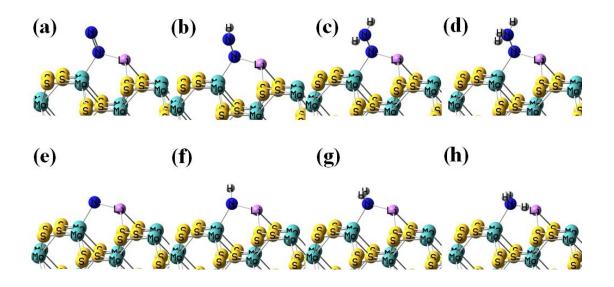

Figure S12. The models of unit cell of 1T-MoS₂ in the (a) top-view, and (b) side-view (along x-axis), and (c) side-view of MoS₂ (along y-axis).

Figure S13. (a) The electron contour map obtained from the top-view. (b) The key structures of intermediates N=N adsorbed with Li-S on MoS_2 of the PED. (c) The key structures of intermediates Li adsorbed on bridge-S on MoS_2 . (d) The electron contour map of Mo-NH₃ from the side-view.

Figure S14. The Side-view of the 1T-MoS₂ edges. (a) H* adsorption on the S-edge site and (b) H* adsorption on the Mo-edge site and (c) Li* adsorption on the bridge S site and (d) N₂* adsorption on the Mo site and (e) NH₃* adsorption on the Mo site and (f) NH₂* adsorption on the Mo site and (g) NH₁* adsorption on the Mo site.

Figure S15. The geometries of the initial states (I. S.) for (a) nitrogen adsorption and nitrogen reduction reaction (NRR), the intermediate states (I. M. S.) (b)-(g), and the final states (F. S.), and (h) final states (F.S.) for NH₃ adsorption on the Li-1T-MoS₂.

Compounds name	Electrolytes	RHE (V)	NH₃ yield rate (μg/h/mg _{cat})	Faradaic efficiency (%)	Ref.
1T-MoS ₂ -Ni	0.25 M	-0.3	1.05	27.66	Present
	LiClO ₄		μg/min/cm ²		
Ru-MoS ₂	10 mM HCl	-0.15	0.11 nmol/s/cm ²	17.60	1
Co-MoS ₂	0.01 H ₂ SO ₄	-0.3	0.63 nmol/h/g	10.00	2
MoS ₂	0.1 M LiSO ₄	-0.2	43.4	9.81	3
N-MoS ₂	0.1 M Na ₂ SO ₄	-0.3	69.82	9.14	4
DR-MoS ₂	0.1 M Na ₂ SO ₄	-0.4	29.28	8.34	5
2H-MoS ₂	0.1 M Na ₂ SO ₄	-0.5	0.08 nmol/s/cm ²	1.17	6
MoS ₂ -rGO	0.1 M LiClO ₄	-0.45	24.82	4.56	7
FeS _x /Fe	0.1 M KOH	-0.3	0.41 nmol/s/cm ²	17.60	8
FeS ₂	LiSO _{4 (pH=2)}	-0.2	11.5	14.60	9
FeS ₂ /CFP	0.25 M LiClO ₄	-0.6	0.096 µg/min	14.14	10
Fe ₃ S ₄	0.1 M HCl	-0.4	75.4	6.45	11
Sn/SnS ₂	0.1 M PBS	-0.7	23.8	6.50	12
SnS ₂ /ZnS ₂ @Ni	0.1 M Na ₂ SO ₄	-0.5	0.91 nmol/s/cm ²	10.80	13

Table S2: The literatures of other metal sulfide electrocatalysts for NRR in comparison with our work.

References

1. Suryanto BH, *et al.* MoS_2 polymorphic engineering enhances selectivity in the electrochemical reduction of nitrogen to ammonia. *ACS Energy Letters* **4**, 430-435 (2018).

 Zhang J, *et al.* Cobalt-Modulated Molybdenum–Dinitrogen Interaction in MoS₂ for Catalyzing Ammonia Synthesis. *Journal of the American Chemical Society* **141**, 19269-19275 (2019).

 Liu Y, *et al.* Dramatically Enhanced Ambient Ammonia Electrosynthesis Performance by In-Operando Created Li–S Interactions on MoS₂ Electrocatalyst. *Advanced Energy Materials* 9, 1803935 (2019).

4. Zeng L, Chen S, van der Zalm J, Li X, Chen A. Sulfur vacancy-rich N-doped MoS₂ nanoflowers for highly boosting electrocatalytic N₂ fixation to NH₃ under ambient conditions. *Chemical Communications* **55**, 7386-7389 (2019).

Li X, *et al.* Boosted electrocatalytic N₂ reduction to NH₃ by defect-rich MoS₂ nanoflower.
 Advanced Energy Materials 8, 1801357 (2018).

6. Zhang L, *et al.* Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS₂ catalyst: theoretical and experimental studies. *Advanced Materials* **30**, 1800191 (2018).

7. Li X, *et al.* A MoS_2 nanosheet–reduced graphene oxide hybrid: an efficient electrocatalyst for electrocatalytic N_2 reduction to NH_3 under ambient conditions. *Journal of materials chemistry A* **7**, 2524-2528 (2019).

8. Xiong W, Guo Z, Zhao S, Wang Q, Xu Q, Wang X. Facile, cost-effective plasma synthesis of self-supportive FeS_x on Fe foam for efficient electrochemical reduction of N₂ under ambient conditions. *Journal of Materials Chemistry A* **7**, 19977-19983 (2019).

9. Feng D, Zhang X, Sun Y, Ma T. Surface-defective FeS_2 for electrochemical NH3 production under ambient conditions. *Nano Materials Science*, (2019).

10. Chang CC, et al. Photoactive Earth-Abundant Iron Pyrite Catalysts for Electrocatalytic

Nitrogen Reduction Reaction. Small 15, 1904723 (2019).

11. Zhao X, Lan X, Yu D, Fu H, Liu Z, Mu T. Deep eutectic-solvothermal synthesis of nanostructured Fe_3S_4 for electrochemical N_2 fixation under ambient conditions. *Chemical communications* **54**, 13010-13013 (2018).

 Li P, *et al.* Amorphous Sn/Crystalline SnS₂ Nanosheets via In Situ Electrochemical Reduction Methodology for Highly Efficient Ambient N₂ Fixation. *Small* 15, 1902535 (2019).
 Chen X, Liu Y-T, Ma C, Yu J, Ding B. Self-organized growth of flower-like SnS₂ and forest-like ZnS nanoarrays on nickel foam for synergistic superiority in electrochemical ammonia synthesis. *Journal of Materials Chemistry A* 7, 22235-22241 (2019).