## **Tridecaboron Diphosphide: A New Infrared Light Active Photocatalyst for Efficient CO<sub>2</sub> Photoreduction under Mild Reaction Conditions**

Li Shi <sup>a</sup>, Xiaohui Ren <sup>a,b</sup>, Qi Wang <sup>a,b</sup>, Wei Zhou <sup>d</sup>, Jinhua Ye <sup>a,b,c\*</sup>

<sup>a</sup> International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.

<sup>b</sup> Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0814, Japan.

<sup>c</sup> TJU-NIMS International Collaboration Laboratory, School of Material Science and Engineering, Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.

<sup>d</sup> Department of Applied Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science, Tianjin University, Tianjin 300072, P. R. China.

E-mail: Jinhua.YE@nims.go.jp

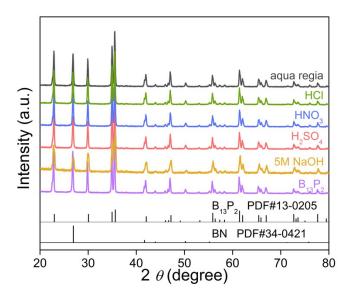



Figure S1. XRD patterns of commercial  $B_{13}P_2$  before and after concentrated acid and 5M NaOH solution treatment.

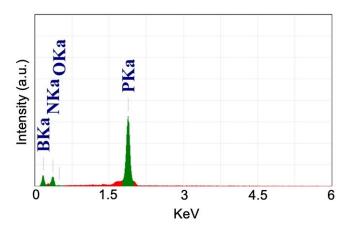



Figure S2. Energy Dispersive Spectrometer (EDS) of commercially available  $B_{13}P_2$ .

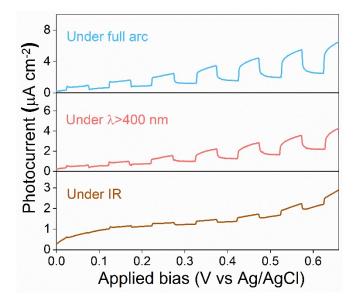



Figure S3. Linear-sweep-voltammetry sweeps for the  $B_{13}P_2$  photoanode under full arc,

 $\lambda$ >400 nm and IR light.

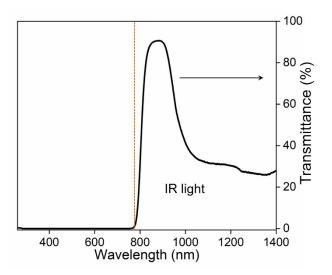



Figure S4. Transmittance spectrum of UV-Vis cutoff filter. It shows that the produced incident light wavelength is  $\lambda > 780$  nm.



Table S1. Comparison of photocatalytic  $CO_2$  reduction performances over different

Figure S5. The experimental setup for photocatalytic CO<sub>2</sub> reduction.

| photocatalysts                 | Light source                                                  | CO <sub>2</sub> reduction activity | References                                        |
|--------------------------------|---------------------------------------------------------------|------------------------------------|---------------------------------------------------|
| B <sub>13</sub> P <sub>2</sub> | 300 W Xe lamp, IR light $(\lambda > 780 \text{ nm})$          | CO: 0.13 µmol h <sup>-1</sup>      | This work                                         |
| CuS                            | 300 W Xe lamp with<br>AM 1.5 G filter, IR light<br>(λ>800 nm) | CO: 0.073 µmol h <sup>-1</sup>     | J. Am. Chem.<br>Soc. 2019, 141,<br>423–430.       |
| Defective WO <sub>3</sub>      | 40 W silicon nitride lamp,<br>IR light (λ>800 nm)             | CO: 0.015 µmol h <sup>-1</sup>     | Joule 2018, 2,<br>1004.                           |
| UiO-66/CNNS                    | 300 W Xe lamp, visible<br>light (400 nm<λ<800 nm)             | CO: 0.099 μmol h <sup>-1</sup>     | Adv. Funct.<br>Mater. 2015, 25,<br>5360–5367.     |
| BiOCl                          | 500 W Xe lamp, full arc                                       | CO: 0.101 μmol h <sup>-1</sup>     | Nano Research<br>2015, 8, 821–<br>831.            |
| BiOIO <sub>3</sub>             | 300 W Xe lamp, full arc                                       | CO: 0.35 μmol h <sup>-1</sup>      | Adv. Mater.<br>2020, 32,<br>1908350.              |
| Mg-In LDH                      | 200 W Hg-Xe lamp, full arc                                    | CO: 0.4 µmol h <sup>-1</sup>       | Angew. Chem.<br>Int. Ed. 2012, 51,<br>8008 –8011. |

photocatalysts.

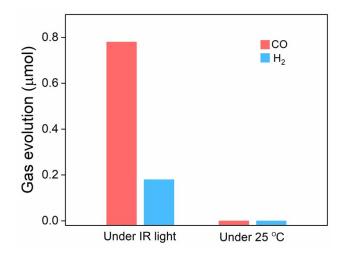



Figure S6. CO and  $H_2$  evolution over  $B_{13}P_2$  under IR light and 25 °C condition without light, respectively. The reaction time is 6 hours and  $Co(bpy)_3^{2+}$  is used as cocatalyst.

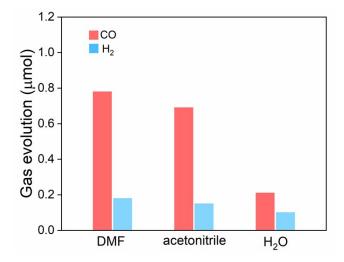



Figure S7. CO and H<sub>2</sub> evolution over  $B_{13}P_2$  under IR light in different solvent in the presence of TEOA as sacrificial agent. The reaction time is 6 hours and Co(bpy)<sub>3</sub><sup>2+</sup> is used as cocatalyst.

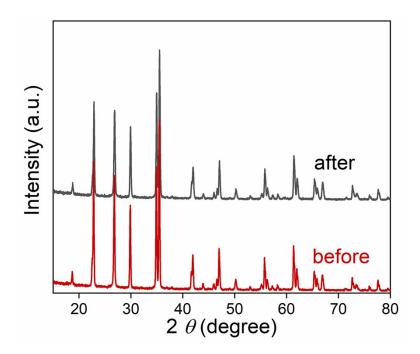



Figure S8. XRD patterns of  $B_{13}P_2$  before and after photocatalytic CO<sub>2</sub> reduction for 6 cycles.

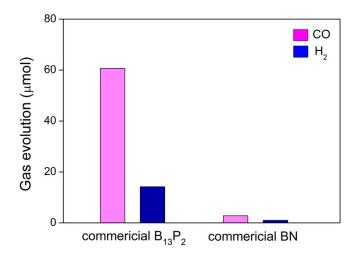



Figure S9. Photocatalytic CO<sub>2</sub> reduction performances over commercial  $B_{13}P_2$  and BN under full arc (UV+ Vis + IR) light irradiation.

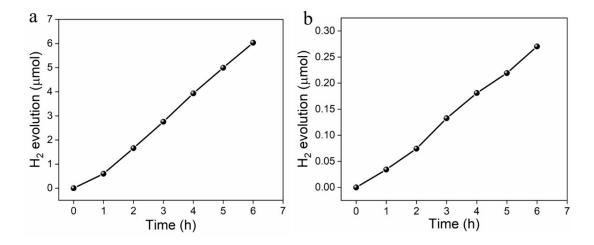



Figure S10. Photocatalytic  $H_2$  evolution performances of  $B_{13}P_2$  under (a)  $\lambda$ >400 nm (Vis+ IR) light and (b) IR light.

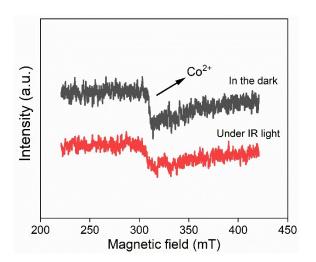



Figure S11. ESR spectra of  $B_{13}P_2/Co(bpy)_3^{2+}$  before and after IR light irradiation.

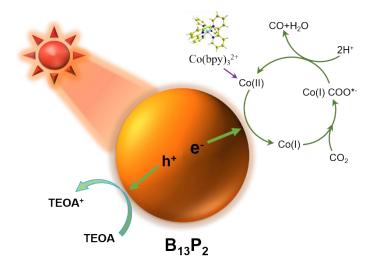



Figure S12. Proposed mechanism of  $B_{13}P_2/Co(bpy)_3^{2+}$  for photocatalytic  $CO_2$  reduction.