Supporting Information

When MOFs Meet MXenes: Superior ORR Performance in Both

Alkaline and Acid Solutions

Wen-Tao Wang^{a,b}, Nadia Batool^{a,b}, Tian-Heng Zhang^{a,b}, Jiao Liu^{a,b,c}, Xiao-Feng Han^{a,b}, Jing-Hua Tian^{a,b*} and Ruizhi Yang^{a,b*}

^a College of Energy, Soochow Institute for Energy and Materials InnovationS & Collaborative Innovation Center

of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China.

^b Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province,

Soochow University, Suzhou 215006, China

^c Department of Chemistry, Soochow University, No. 199 Renai Road, Suzhou 215123, China

* Corresponding authors (emails: jhtian@suda.edu.cn(J.-H. Tian); yangrz@suda.edu.cn(R. Yang))

Figure S1. EDX spectrum of Fe-N-C@MXene.

Figure S2. Nitrogen adsorption-desorption isotherms of Fe-N-C and Fe-N-C @MXene.

Figure S3. XPS spectra of Fe-N-C and Fe-N-C@MXene.

Fe-N-C Fe-N-C@MXene

Figure S4. Detailed proportion of pyridinic-N, pyrrolic-N, graphitic-N, and oxidize-N for Fe-N-C and Fe-N-C@MXene

Figure S5. High-resolution XPS spectra of Ti 2p for MXene and Fe-N-C@MXene.

Figure S6. Raman spectra of Fe-N-C and Fe-N-C@MXene

Figure S7. Thermogravimetry curve of Fe-doped ZIF-8 heated in a high purity nitrogen atmosphere.

Figure S8. LSV curves of samples a) under different initial carbonization temperatures, b) synthesized under different second carbonization temperatures, c) with different mass ratios.

Figure S9. I_d and I_r of (a) Fe-N-C and (b) Fe-N-C@MXene under 1600 rpm in 0.1 M KOH.

Figure S10. Cyclic voltammetry curves of (a) Fe-N-C and (b) Fe-N-C@MXene under different scan rates in 0.1 M KOH.

Figure S11. The attenuation of half-wave potential of (a) Fe-N-C, (b) Pt/C and, (c) Fe-N-C@MXene after 10,000 cycles of CV in 0.1 M KOH.

Figure S12. The attenuation of half-wave potential of (a) Fe-N-C, (b) Pt/C, and (c) Fe-N-C@MXene after 10,000 cycles of CV in 0.1 M HClO₄.

Figure S13. I_d and I_r of (a) Fe-N-C and (b) Fe-N-C@MXene under 1600 rpm in 0.1 M HClO₄.

Figure S14. Cyclic voltammetry curves of (a) Fe-N-C and (b) Fe-N-C@MXene under different scan rates in 0.1 M HClO₄.

Figure S15. (a-c) SEM and (d-f) TEM images of Fe-N-C@MXene after 10,000 cycles in 0.1 M KOH.

Figure S16. (a-c) SEM and (d-f) TEM images of Fe-N-C@MXene after 10,000 cycles in 0.1 M HClO₄.

Figure S17. XRD spectra of Fe-N-C@MXene after 10,000 cycles in 0.1 M KOH (red line) and in 0.1 M HClO₄ (blue line).

Catalysts	E _{1/2} (V)	i _d (mA/cm²)	ΔE _{1/2} (mV)	Electrolyte	Ref.
Fe-N-C-950	0.78	5.2	12 (10k cycles)	0.1 M HClO ₄	1
Czif- Fe(acac)3-6	0.805	5.2	19 (10k cycles)	0.1 M HClO ₄	2
C-Fe-Z8-Ar	0.82	7.5	40 (10k cycles)	0.1 M HClO ₄	3
Fe-N-C/H ₂ O ₂	0.78	7.3	13 (20k cycles)	0.1 M HClO ₄	4
Fe-N-C-3	0.805	5.3	18 (10k cycles)	0.1 M HClO ₄	5
FeNC-900	0.848	7.0	9 (5k cycles)	0.1 M KOH	6
	0.709	6.8	16 (5k cycles)	0.1 M HClO ₄	
Fe-N- C@MXene	0.887	6.3	0 (10k cycles)	0.1 M KOH	This work
-	0.777	5.7	11 (10k cycles)	0.1 M HClO ₄	

Table 1. Comparisons of the ORR performance of M-N-C catalysts for the recently published papers.

References

- M. Xiao, J. Zhu, L. Ma, Z. Jin, J. Ge, X. Deng, Y. Hou, Q. He, J. Li, Q. Jia, S. Mukerjee, R. Yang, Z. Jiang, D. Su, C. Liu and W. Xing, ACS Catal., 2018, 8, 2824-2832.
- L. Gao, M. Xiao, Z. Jin, C. Liu, J. Zhu, J. Ge and W. Xing, J. Energy Chem., 2018, 27, 1668-1673.
- 3. X. Wang, H. Zhang, H. Lin, S. Gupta, C. Wang, Z. Tao, H. Fu, T. Wang, J. Zheng, G. Wu and X. Li, *Nano Energy*, 2016, 25, 110-119.
- 4. X. Wei, X. Luo, H. Wang, W. Gu, W. Cai, Y. Lin and C. Zhu, *Appl. Catal. B-Environ.*, 2020, 263.
- 5. L. Gao, M. Xiao, Z. Jin, C. Liu, J. Ge and W. Xing, J. Energy Chem., 2019, 35, 17-23.
- Z. Li, X. Liang, Q. Gao, H. Zhang, H. Xiao, P. Xu, T. Zhang and Z. Liu, *Carbon*, 2019, 154, 466-477.