SUPPORTING INFORMATION

Record power conversion efficiencies for Iron (II)-NHC-sensitized DSSCs from rational molecular engineering and electrolyte optimization

Anil Reddy-Marri,^a Edoardo Marchini,^b Valentin Diez Cabanes,^c Roberto

Argazzi,^d Mariachiara Pastore, *c Stefano Caramori, *b and Philippe C. Gros,*a

^a Université de Lorraine, CNRS, L2CM, F-54000 Nancy

^b Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L.Borsari 46, 44121, Ferrara, Italy

^c Université de Lorraine, CNRS, LPCT, F-54000 Nancy

^d CNR-ISOF c/o Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L.Borsari 46, 44121, Ferrara, Italy

Table of Contents

Synthesis of 2	2
Copies of NMR Spectra	3
Computational details	11
Cyclic Voltammetry of sensitized thin films	22
Characterization of Photoanodes	23
Steady State and Transient Absorption Spectroscopy of sensitized thin films	24
Photovoltaic properties	28
Cartesian coordinates for ARM13@Mg-TiO ₂ and C1@Mg-TiO ₂	34

Synthesis of 2

Synthesis of *aminopyridine 1*

In a clean and dry 100 mL two-neck flask charged with imidazole (4.18 g, 61.35 mmol) and KOH (3.44 g, 61.35 mmol) flakes and heated at 250 °C under high vacuum and cooled to ambient temperature gave potassium salt of imidazole. Then added 4-amino-2,6-dichloropyridine (1.0 g, 6.13 mmol) in diglyme (20 mL) by vigorous stirring under Argon atmosphere at 150 °C for 18 h. The mixture was poured into water and the precipitate that formed was filtered and dried to isolate desired compound **1** (1.25 g, 93% yield). ¹H NMR (400 MHz, DMSO-d6, δ ppm): 8.43 (s, 2H), 7.78 (s, 2H), 7.02 (s, 2H), 6.62 (bs, 2H), 6.61 (s, 2H). ¹³C NMR (100 MHz, DMSO-d6, δ ppm): 159.6, 148.9, 135.65, 130.3, 117.0, 94.8. ESI-HRMS calcd for C₁₁H₁₁N₆ m/z = 227.1040. Found: 227.1038.

Synthesis of bromopyridine 2

To a solution of **1** (0.7 g, 3.09 mmol) in 15 mL HBr 48% in H₂O, a solution of NaNO₂ (0.213 g, 3.09 mmol) in 3.0 mL of H₂O was slowly added at 0 °C. The mixture was stirred for 15 min and added to a solution of CuBr₂ (0.345 g, 1.55 mmol) in 5.0 mL HBr 48%. The resulting mixture was stirred and refluxed for 1 h. The reaction mixture was quenched with 2N NaOH until pH \approx 8. The suspension thus obtained was extracted with ethyl acetate (3 X 100 mL). The organic layer was washed with aqueous NaCl, dried over Na₂SO₄ and concentrated to dryness. The desired creamy colour compound 2 was obtained without purification and used directly for next step (0.48 g, 53% yield). ¹H NMR (400 MHz, CDCl₃, δ ppm): 8.36 (s, 2H), 7.62 (s, 2H), 7.44 (s, 2H), 7.24 (s, 2H). ¹³C NMR (400 MHz, CDCl₃+CD3OD, δ ppm): 152.5, 141.3, 139.1, 134.4, 120.4, 117.4. ESI-HRMS calcd for C₁₁H₉N₅Br m/z = 290.0036. Found: 290.0082.

Copies of NMR Spectra

Fig. S2: ¹³C NMR spectrum of compound **1**.

Fig. S3: ¹H NMR spectrum of compound **2**.

Fig. S4: ¹³C NMR spectrum of compound 2

Fig. S5: ¹H NMR spectrum of compound **3**.

Fig. S6: ¹³C NMR spectrum of compound **3**.

Fig. S7: ¹H NMR spectrum of L2.

Fig. S8: ¹³C NMR spectrum of L2.

Fig. S9: ¹H NMR spectrum of compound 4.

Fig. S10: ¹³C NMR spectrum of compound 4.

Fig. S11: ¹H NMR spectrum of L1.

Fig. S13: ¹H NMR spectrum of ARM-7.

Fig. S14: ¹³C NMR spectrum of ARM-7.

Fig. S15: ¹H NMR spectrum of ARM-11.

Fig. S16: ¹H NMR spectrum of ARM-13.

Computational details

Figure S17. Projected Density of States (PDOS) of the C1@Mg-TiO₂ systems over the atoms belonging to the C1 dye (red), TiO₂ surface (blue) and Mg²⁺ cation (magenta) moieties as calculated by Mulliken population analysis and employing B3LYP (top) and B3LYP*(HF xc=15%, bottom panel) functionals. Note that for the sake of a better visualization, only the vertical bars conforming the C1 DOS are represented here and the TiO₂ DOS intensity has been divided by a factor of 10.

Figure S18. Electronic coupling *V* between the frontier unoccupied MOs of C1 and the states of the TiO2-Mg surface (vertical bars); and diabatic TiO₂-Mg DOS (continuous lines), as calculated by using B3LYP (purple) and B3LYP* (magenta color) functionals.

Figure S19 Electronic coupling V between the frontier occupied MOs of C1 and the states of the TiO2-Mg surface (vertical bars); and diabatic TiO₂-Mg DOS (continuous lines), as calculated by using B3LYP (purple) and B3LYP* (magenta color) functionals.

Table S1 Probability distributions (Γ) and related recombination/injection lifetimes (τ) calculated at the diabatic H-2, H-1, HOMO, LUMO and L+1 energies, as estimated by employing B3LYP and B3LYP* functionals. The relevant diabatic injection properties are marked with orange color.

Functional	$\Gamma_{\rm H-2}({\rm eV})$	$\Gamma_{\rm H-1}~({\rm eV})$	$\Gamma_{\rm HOMO}~({\rm eV})$	$\Gamma_{\rm LUMO}~({\rm eV})$	Γ_{L+1} (eV)
B3LYP	3.32E-08	4.71E-07	1.56E-10	0.1640	5.36E-05
B3LYP*	1.83E-07	5.87E-07	3.40E-10	0.1673	7.54E-05
	$\tau_{_{\mathrm{H}\text{-}2}}$ (fs)	$\tau_{_{\mathrm{H}}-1}$ (fs)	$ au_{\rm HOMO}$ (fs)	$\tau_{\rm LUMO}$ (fs)	$\tau_{L+1}^{}$ (fs)
B3LYP	1.98E+07	1.40E+06	4.21E+09	4.01	12273
B3LYP*	3.61E+06	1.12E+06	1.93E+09	3.93	8723

Figure S20. NTOs for the main transition forming the MLCT excitations of the Fe complex dyes studied in this work (C1, ARM13, ARM11 and ARM7 from top to the bottom) both in their protonated (left) and deprotonated (right) forms. Purple/red colors are employed to display hole/electron isodensity plots. The isovalues used for this plot was 0.02 a.u.

Table S2 State Number (*n*), excitation energies (E_x), wavelengths (λ), oscillator strengths (f), major contributions and related percentage (%) of the main transitions in the visible region for the protonated dyes C1, ARM13, ARM11 and ARM7. Transitions related with MLCT excitations are marked with orange color.

	п	$E_x (eV)$	λ (nm)	f(a.u.)	Transition	0⁄0
	1	2.1	591	0	$H \rightarrow L$	66.6
C1	5	2.68	463	0.308	$H-2 \rightarrow L+1$	45.4
	9	3.23	384	0.155	$H \rightarrow L+3$	69.4
	1	2.04	607	0	H→L	70
ARM13	4	2.69	461	0.148	H - 2→ L	63.4
	9	3.22	385	0.15	$H \rightarrow L+3$	55
	1	2.23	555	0	H→L	69.1
ARM11	4	2.73	454	0.271	$H-1 \rightarrow L$	64.4
	9	3.2	388	0.209	$H-2 \rightarrow L+1$	58.8
	1	2.04	607	0	H→L	69.5
ARM7	3	2.54	487	0.371	$H-1 \rightarrow L$	67.1
	9	3.17	391	0.135	$H \rightarrow L+3$	50.2

Table S3 Experimental and calculated ground/excited state oxidation potentials(GSOPs/ESOPs) in eV versus SCE of C1, ARM7, ARM11 and ARM13.

	Experiments			Theory
Dye	GSOP	ESOP (GSOP-E ₀₋₀)	GSOP	ESOP (GSOP-E _{max})
C1	0.85	-1.40	1.08	-1.60
ARM13	0.82	-1.47	1.00	-1.69
ARM11	0.70	-1.65	0.92	-1.81
ARM7	0.74	-1.51	0.93	-1.61

Figure S21 Projected Density of States (PDOS) of the C1@TiO₂ (top) and C1@Mg-TiO₂ (bottom panel) systems over the atoms belonging to the C1 dye (red), TiO₂ surface (blue) and Mg^{2+} cation (magenta) moieties as calculated by Mulliken population analysis. Note that for the sake of a better visualization, only the vertical bars conforming the C1 DOS are represented here and the TiO₂ DOS intensity has been divided by a factor of 10. The isodensity plots of the relevant dye occupied MOs indicated by the grey arrows are displayed in the onsets of the PDOS plot. The energies and weight percentages for each plotted MOs are reported as well. The isovalue used in the isodensity plots was 0.02 a.u.

Figure S22 Projected Density of States (PDOS) of the ARM13@TiO₂ (top) and ARM13@Mg-TiO₂ (bottom panel) systems over the atoms belonging to the ARM13 dye (red), TiO₂ surface (blue) and Mg²⁺ cation (magenta) moieties as calculated by Mulliken population analysis. Note that for the sake of a better visualization, only the vertical bars conforming the ARM13 DOS are represented here and the TiO₂ DOS intensity has been divided by a factor of 10. The isodensity plots of the relevant dye occupied MOs indicated by the grey arrows are displayed in the onsets of the PDOS plot. The energies and weight percentages for each plotted MOs are reported as well. The isovalue used in the isodensity plots was 0.02 a.u.

Table S4 Diabatic energy levels for the dye (H-2, H-1, HOMO, LUMO and L+1 energies) and TiO₂ surface (Conductance Band Minimum (CBM) and Valence Band Minimum (VBM)) with their corresponding energy gaps (E_g), for C1@TiO₂, C1@Mg-TiO₂, ARM13@TiO₂ and ARM13@Mg-TiO₂ systems. All values are given in eV.

Dye@ TiO ₂	H-2	H-1	НОМО	LUMO	L+1	E _g @Dye	VBM	CBM	E _g @TiO ₂
C1	-6.11	-6.08	-5.72	-3.04	-2.66	2.66	-7.07	-3.34	3.72
C1-Mg	-6.54	-6.52	-6.11	-3.38	-3.26	2.74	-7.21	-4.17	3.04
ARM13	-5.98	-5.96	-5.61	-2.6	-2.29	3.01	-7.05	-3.34	3.71
ARM13-Mg	-6.43	-6.41	-6.02	-3.34	-2.55	2.69	-7.21	-4.17	3.05

Figure S23 Calculated electronic coupling V between the frontier unoccupied MOs of C1 and the states of the TiO_2 (grey) and TiO_2 -Mg (magenta color) surfaces (vertical bars); the corresponding diabatic TiO_2 and TiO_2 -Mg DOS (dashed lines) are also reported.

Figure S24 Calculated electronic coupling *V* between the frontier occupied MOs of C1 and the states of the TiO_2 (grey) and TiO_2 -Mg (magenta color) surfaces (vertical bars); the corresponding diabatic TiO_2 and TiO_2 -Mg DOS (dashed lines) are also reported.

Figure S25 Calculated electronic coupling *V* between the frontier unoccupied MOs of ARM13 and the states of the TiO_2 (grey) and TiO_2 -Mg (magenta color) surfaces (vertical bars); the corresponding diabatic TiO_2 and TiO_2 -Mg DOS (dashed lines) are also reported.

Figure S26. Calculated electronic coupling V between the frontier occupied MOs of ARM13 and the states of the TiO_2 (grey) and TiO_2 -Mg (magenta color) surfaces (vertical bars); the corresponding diabatic TiO_2 and TiO_2 -Mg DOS (dashed lines) are also reported.

Table S5 Probability distributions (Γ) and related recombination/injection lifetimes (τ) calculated at the diabatic H-2, H-1, HOMO, LUMO and L+1 energies for C1@TiO₂, C1@Mg-TiO₂, ARM13@TiO₂ and ARM13@Mg-TiO₂. The relevant diabatic injection properties are marked with orange color.

Dye@TiO ₂	$\Gamma_{\text{H-2}} (\text{eV})$	$\Gamma_{\rm H-1}~({\rm eV})$	$\Gamma_{\rm HOMO}~({\rm eV})$	$\Gamma_{\rm LUMO}({\rm eV})$	$\Gamma_{L+1} (eV)$
C1	2.28E-08	2.83E-07	2.18E-10	1.12E-05	0.142
C1-Mg	1.83E-07	5.87E-07	3.40E-10	0.167	7.54E-05
ARM13	4.93E-08	2.62E-08	4.13E-11	0.152	3.07E-05
ARM13-Mg	2.49E-07	2.72E-08	9.13E-11	0.179	4.43E-05
	$\tau_{\rm H-2}~({\rm fs})$	$\tau_{\rm H-1}~({\rm fs})$	$ au_{\rm HOMO}$ (fs)	$\tau_{\rm LUMO}^{}({\rm fs})$	τ_{L+1} (fs)
C1	2.89E+07	2.32E+06	3.01E+09	58530	4.63
C1-Mg	3.61E+06	1.12E+06	1.93E+09	3.93	8723
ARM13	1.33E+07	2.51E+07	1.59E+10	4.33	21428
ARM13-Mg	2.64E+06	2.42E+07	7.20E+09	3.67	14840

Cyclic Voltammetry of sensitized thin films

Figure S27. Normalized cyclic voltammetry recorded on TiO₂ for ARM7, ARM11 and ARM13 (black, red, and blue line respectively). The voltage is referred to double jacket SCE

Characterization of Photoanodes

Figure S28 SEM cross-section of a two-layered TiO_2 electrode. Each 18 NRT anatase film accounts for a thickness of ca. 8.5 microns

Figure S29 SEM top view showing the nanocrystalline nature of 18NRT TiO_2 electrodes annealed at 500 $^{\circ}\mathrm{C}$

Steady State and Transient Absorption Spectroscopy of sensitized thin films

Figure S30 Shift of the absorption spectra of the Fe(II)NHC series for ARM7 (a), ARM11 (b) and ARM13 (c) in contact with air, Li⁺ electrolyte (0.6 M PMIOTf + 0.1 M LiOTf + 0.1 M GuNCS + 0.1 M TBAPF₆ in acetonitrile) and Li⁺ + Mg²⁺ electrolyte (0.6 M PMIOTf + 0.1 M LiOTf + 0.1 M GuNCS + 0.1 M TBAPF₆ + 0.1 M MgOTf in acetonitrile)

Figure S31 μ s-s recombination kinetics observed at 650 nm in the presence of blank *electrolyte 3* (0.6 M PMIOTf + 0.1 M LiOTf + 0.1 M GuNCS + 0.1 M MgOTf + 0.1 M TBAPF₆ in acetonitrile) for ARM7(a), ARM11(b) and ARM13(c)

Figure S32 ms-time scale TAS (1 MOhm input impedance) of Fe(II)NHC sensitized films for ARM7 (a), ARM11 (b) and C1 (c) in contact with *electrolyte 3* deprived of I₂. All the spectra are characterized by general features like absorption of I₂ generated upon Fe(II) regeneration at 420 nm, stark absorption at 500 nm, bathochromic shifted bleach and absorption of electrons in TiO₂ trap states starting from 600 nm

Figure S33 (a), Recombination dynamics recorded at 500 nm for ARM13 dyed film in contact with blank *electrolyte 2* (0.6 M PMIOTf + 0.1 M LiOTf + 0.1 M GuNCS + 0.1 M MgOTF₂ in acetonitrile) and blank *electrolyte 3* (0.6 M PMIOTf + 0.1 M LiOTf + 0.1 M GuNCS + 0.1 M GuNCS + 0.1 M MgOTf₂ + 0.1 M TBAPF₆in acetonitrile). (b), Regeneration dynamics of ARM13 in presence of the reduced form of *electrolyte 2* (0.6 M PMII + 0.1 M LiI + 0.1 M GuNCS + 0.1 M MgI₂ in acetonitrile) and 3 (0.6 M PMII + 0.1 M LiI + 0.1 M GuNCS + 0.1 M TBAI in acetonitrile)

Figure S34 500 nm kinetics for C1 dyed film in contact with 0.6 M PMIOTf + 0.1 M GuNCS + 0.1 M TBAPF₆ and with 0.6 M PMIOTf + 0.1 M GuNCS + 0.1 M TBAPF₆ + 0.1 M LiOTf + 0.1 M Mg(OTf)₂

Figure S35 Cyclic voltammetry of C1 dyed film in contact with 0.6 M PMIOTf + 0.1 M GuNCS + 0.1 M TBAPF₆, with 0.6 M PMIOTf + 0.1 M GuNCS + 0.1 M TBAPF₆ + 0.1 M LiOTf and with 0.6 M PMIOTf + 0.1 M GuNCS + 0.1 M TBAPF₆ + 0.1 M LiOTf + 0.1 M Mg(OTf)₂

Photovoltaic properties

Figure S36 JV curves of the N719, ARM13 and C1 in the presence of *electrolyte 2* in ACN with the scattering layer

Figure S37 Complex plane (Nyquist) plots of ARM7 sensitized solar cell in the presence of *electrolyte 2*. Plots were recorded in the dark by biasing the cell at forward voltage in the 250-450 mV interval. Inset reports the magnified view of the small arcs obtained at a voltage \geq 350 mV.

Figure S38 Complex plane (Nyquist) plots of ARM11 sensitized solar cell in the presence of electrolyte 2. Plots were recorded in the dark by biasing the cell at forward voltage in the 250-450 mV interval. Inset reports the magnified view of the small arcs obtained at a voltage \geq 350 mV.

Figure S39 Complex plane (Nyquist) plots of ARM13 sensitized solar cell in the presence of electrolyte 2. Plots were recorded in the dark by biasing the cell at forward voltage in the 250-450 mV interval. Inset reports the magnified view of the small arcs obtained at a voltage \geq 350 mV.

Figure S40 Complex plane (Nyquist) plots of C1 sensitized solar cell in the presence of *electrolyte 2*. Plots were recorded in the dark by biasing the cell at forward voltage in the 300-450 mV interval. Inset reports the magnified view of the small arcs obtained at a voltage \ge 400 mV.

Figure S41 Complex plane (Nyquist) plots of N719 sensitized solar cell in the presence of *electrolyte 2*. Plots were recorded in the dark by biasing the cell at forward voltage in the 250-500 mV interval. Inset reports the magnified view of the small arcs obtained at a voltage \geq 400 mV.

Figure S42 : $R_{TOT} = \overline{\partial J}$ showing a good agreement with RTOT extracted from the fitting of EIS data obtained by sampling the forward voltage at 50 mV intervals under dark conditions

Figure S43 (a) IPCE and (b) JV curves obtained for C1 sensitized cells with *electrolyte 3* deprived of Li^+ and Mg^{2+} .

Figure S44 Comparison between JV curves obtained with *el2* and with *el3* for ARM7 (a), ARM11 (b), ARM13 (c) and C1 (d)

Figure S45: (a), IPCE curves obtained with *electrolyte 3* and Fe(II)NHC sensitized cells. (b), APCE curves obtained from IPCE, The tendency to diverge at low λ is generated by errors in a proper estimation of the optical density of the electrode when the absorbance decreases sharply from the maximum around 500 nm

Figure S46: Dark currents of Fe(II)NHC sensitized TiO_2 in contact with *electrolyte 2* (solid line) and *electrolyte3* (dashed lines)

Figure S47: J-V for curves for N719-sensitized DSSCs. Left: with *el2* under AM 1.5 illumination (solid lines) and in the dark (dashed lines). Right : with *electrolyte 3* under AM 1.5 G illumination (solid lines) and in dark conditions (dashed lines).

Cartesian coordinates for ARM13@Mg-TiO₂ and C1@Mg-TiO₂

Table S6: Cartesian coordinates for ARM13@Mg-TiO₂ and C1@Mg-TiO₂ geometries as represented in a xyz file format.

ARM13@Mg-TiO₂

313

Н	-7.936 -1.180	8.660
Н	-5.810 0.114	8.789
Н	-3.638 1.252	8.501
С	-6.071 -0.419	7.877
С	-7.272 -1.132	7.797
С	-3.313 1.038	7.490
Н	-3.081 -3.714	7.329
Н	-1.383 2.054	7.092
С	-2.216 1.427	6.799
С	-5.248 -0.414	6.765
С	-7.614 -1.819	6.624
Ν	-4.037 0.240	6.613
Н	-4.558 -3.064	6.555
Н	-8.542 -2.380	6.544
С	-3.757 -3.802	6.467
Н	-4.190 -4.808	6.433
Ν	-5.558 -1.072	5.623
С	-6.722 -1.760	5.568
Ν	-2.292 0.860	5.525
С	-3.410 0.119	5.378
Н	-1.626 -5.204	5.375
Ν	-3.015 -3.545	5.238
Н	-6.921 0.853	5.110

Н	-0.309 0.676 4.870
Н	-7.049 2.617 4.864
С	-1.954 -4.341 4.808
С	-1.265 1.076 4.511
С	-3.240 -2.529 4.383
Н	-8.713 -3.493 4.379
C	-7.101 1.637 4.374
N	-6 846 -2 371 4 333
н	-1 172 2 150 4 309
Γο	-1 100 -0 993 1 102
ц	<pre>-4.400 -0.333 4.102 9.000 1.402 2.021</pre>
п С	-0.030 1.432 5.321
	-7.020 -3.209 3.023
C II	
Н	-1.555 0.558 3.596
C	-5.813 -2.160 3.428
N	-2.285 -2.711 3.388
Ν	-6.079 1.559 3.334
С	-5.124 0.609 3.228
Н	-0.670 -4.141 3.009
С	-7.401 -3.548 2.583
Ν	-3.243 -0.853 2.577
Ν	-6.179 -2.913 2.367
С	-2.270 -1.773 2.360
С	-5.997 2.485 2.293
н	-6.687 3.318 2.216
N	-4 437 0 976 2 078
н	-7 845 -4 200 1 839
C	-3 369 0 175 1 707
C C	-/ 959 2 12/ 1 500
C C	-1 126 -1 716 1 258
с u	-1.420 -1.710 1.230
	-4.440 -2.565 1.254
C	-5.30/ -3.100 1.183
н	-5.130 -4.236 1.174
Н	-0.6/3 -2.4// 1.0/6
C	-2.509 0.370 0.641
Н	-4.556 2.572 0.600
С	-1.533 -0.603 0.409
Н	-5.921 -2.882 0.279
Н	-2.611 1.217 -0.034
С	-0.652 -0.450 -0.800
0	-0.248 -1.571 -1.253
0	-0.478 0.711 -1.287
Mg	-2.421 -2.187 -1.380
Н	-3.459 6.467 -1.700
0	-3.317 -4.384 -2.267
0	2.191 -5.742 -2.285
0	-3.303 -0.560 -2.334
0	-3.479 3.003 -2.337
0	-0.166 -7.579 -2.344
0	-3 670 7 121 -2 /06
0	7 162 0 117 7 110
0	7.103 U.117 -2.410 7.104 -7.755 7.410
0	
0	0.041 -3.1/8 -2.429

0	1.884 1.539 -2.554
0	-3.609 10.679 -2.602
0	1.620 5.111 -2.684
0	4.532 12.057 -2.695
0	-5 325 4 942 -2 727
0	-2 /16 -9 228 -2 750
0	-3.410 -8.238 -2.730
0	7.689 -3.010 -2.751
0	1.490 8.835 -2.763
0	7.009 10.667 -2.820
0	-0.176 -4.150 -2.909
0	5.064 -1.942 -2.917
0	7.034 3.567 -2.940
0	-5.422 -2.488 -2.956
0	6.909 6.970 -2.965
0	7 958 -7 377 -2 970
0	A EE7 8 707 2 076
U T:	4.557 8.707 -2.970
11	0.524 -5.946 -2.987
0	-5.501 1.177 -2.992
0	4.833 1.670 -3.129
0	4.637 5.192 -3.144
Ti	0.385 -2.248 -3.155
Ti	-4.911 -0.617 -3.169
0	-0.471 3.236 -3.181
0	1.416 12.783 -3.241
Ti	-4 855 -4 277 -3 246
ті	6 073 -3 460 -3 264
 т:	E 20E 2 127 2 266
	-3.203 3.127 -3.200
11 .	5.249 10.445 -3.269
-	6.217 -6.708 -3.277
0	-6.995 -4.446 -3.285
Ti	0.183 1.358 -3.294
0	-0.619 6.923 -3.299
Ti	5.546 -0.098 -3.335
Ti	-1.696 -7.794 -3.344
0	-7.101 -0.705 -3.353
Ti	-5.407 6.615 -3.361
0	-7.311 6.541 -3.386
0	-8 584 9 676 -3 430
ті	-5 237 10 364 -3 442
0	6 921 7 009 2 452
0	-0.021 -7.900 -5.432
0	-5.910 8.082 -3.491
0	-6.5/2 11.668 -3.504
Ti	5.232 6.950 -3.522
Ti	5.382 3.441 -3.524
Ti	-0.006 5.065 -3.545
0	4.448 -7.135 -3.568
0	-7.096 2.974 -3.601
0	-1.667 -2.362 -3.617
Ti	-2.079 -4.170 -3.651
0	-0 159 -0 491 -3 661
ті	-0 112 & 7/12 -2 726
т:	-U.IIJ 0./43 -3./20
11 .	-4.953 -7.953 -3.750
11	-2.426 3.111 -3.752

0	-1.634 -6.055 -3.819
Ti	3 098 12 304 -3 836
0	-2 006 5 071 -2 820
- т:	-2.030 3.071 -3.033
	-7.302 -2.479 -3.848
0	-1.836 1.296 -3.850
Ti	-2.217 -0.538 -3.861
0	-5.130 -6.152 -3.867
Ti	3.201 -5.780 -3.880
0	-0.424 10.677 -3.921
Ti	-7.369 1.221 -3.929
ті	8.214 0.193 -3.927
0	3 883 -4 071 -3 938
ті	3 13/ _2 210 _3 030
0	1 000 12 000 2 002
0	-1.999 12.000 -3.982
0	-2.091 8.796 -4.005
0	3.553 -0.334 -4.011
Ti	-7.230 -6.185 -4.033
Ti	-2.496 6.895 -4.034
Ti	-2.510 10.788 -4.090
Ti	2.890 1.458 -4.093
Ti	2.667 8.704 -4.154
Ti	-7 993 7 992 -4 159
ті	2 731 5 082 -/ 169
0	$0.751 \ 5.002 \ -4.105$
U T:	9.230 -1.306 -4.109
	-8.228 11.226 -4.174
0	9.362 -4.818 -4.210
Ti	-0.156 12.476 -4.213
0	3.232 6.946 -4.217
0	8.862 1.906 -4.261
0	3.330 3.347 -4.282
0	3.249 10.544 -4.328
0	8.627 8.647 -4.329
Ti	8 854 -6 573 -4 358
0	8 715 5 208 <i>-1 1</i> 07
- т:	7 967 10 262 A AA
	7.807 10.252 -4.441
0	-8.993 -2.525 -4.450
11	8.662 -3.065 -4.489
0	-9.098 1.101 -4.536
0	1.351 -6.151 -4.610
Ti	7.935 6.915 -4.657
Ti	8.081 3.532 -4.669
0	-3.863 -4.011 -4.696
0	-4.007 -0.644 -4.742
0	-9 631 7 491 -4 773
0	
0	1.403 -2.417 -4.772 4.200 2.14E 4.770
0	-4.200 5.145 -4.779
0	-0.912 -0.423 -4.803
0	6.594 -0.0/4 -4.817
0	-4.350 6.713 -4.874
0	1.181 1.421 -4.912
0	6.984 -6.158 -4.976
0	-1.244 -8.492 -4.995
0	-4.276 10.600 -4.999

0	-9.787 11.902 -5.023
0	6.014 10.118 -5.036
0	6.723 -3.392 -5.042
0	0.923 5.111 -5.087
0	0 882 8 574 -5 183
0	6 1 25 2 151 -5 266
0	
0	5.989 0.939 -5.300
0	3.6/8 13.0/0 -5.412
0	-4.565 -8.556 -5.442
0	-6.801 -2.409 -5.704
0	-1.699 -4.097 -5.707
0	-6.914 1.063 -5.780
0	0.322 13.036 -5.879
0	3.439 -6.139 -5.885
0	-6.850 -5.567 -5.902
0	-1 777 -0 630 -5 905
0	-1.777 -0.030 -5.905
0	-1.920 3.126 -5.910
0	8.954 -7.425 -5.974
0	-7.788 10.679 -6.000
0	-7.510 7.944 -6.024
0	-2.100 6.883 -6.032
0	3.599 -2.172 -6.071
0	8.073 10.989 -6.132
0	3.444 1.340 -6.199
0	-7,400 4,597 -6,235
0	3 0/13 8 566 -6 2/17
0	-2 182 10 621 -6 266
0	-2.103 10.031 -0.200
U T:	3.18/ 5.10/ -0.308
11	-8./42 -2.369 -6.362
0	8.815 -2.994 -6.360
Ti	-8.865 1.019 -6.410
Ti	-8.691 -5.705 -6.501
0	8.290 3.493 -6.545
0	8.165 7.115 -6.573
0	-4.082 -6.051 -6.582
Ti	-9.442 7.600 -6.646
0	-9.498 -0.736 -6.659
Ti	-9 643 11 105 -6 660
0	-9 445 -4 095 -6 662
ті	-0.707 -7.000 -6.665
т:	-0.707 - 7.330 - 0.003
11	-3.450 -4.231 -0.709
0	-4.084 1.165 -6.769
Tí	1.668 -6.351 -6.771
Ti	7.384 -6.755 -6.798
0	-4.021 -2.458 -6.811
0	1.273 -4.348 -6.828
0	1.133 -8.163 -6.839
0	-9.650 2.637 -6.860
Ті	-3.704 3.020 -6.866
Ti	6.385 10 765 -6 885
ті	-3 505 -0 610 -6 807
0	-10 120 0 211 E 001
0	-10.129 9.344 -0.901
0	-4.330 4.854 -6.903

Ti	7.153 -3.522 -6.935
Ti	1.794 -2.465 -6.939
0	-10.036 5.847 -6.983
Ti	-3.978 6.711 -6.988
0	-0.406 -6.210 -6.989
0	-4 669 8 562 -6 991
0	-4.005 8.502 -0.551 0.701 10 590 7.004
- т:	4 010 10 202 7 012
11 	-4.010 10.302 -7.013
11	-3.952 -7.827 -7.031
0	1.269 -0.563 -7.039
0	1.033 3.213 -7.060
0	4.282 10.720 -7.091
Ti	1.657 1.348 -7.103
Ti	4.090 12.515 -7.118
Ti	6.551 3.319 -7.126
Ti	-0.661 -4.238 -7.147
Ti	6.474 7.049 -7.157
Ti	-8 996 4 344 -7 183
ті	
т:	1.424 5.055 -7.225
0	$1.275 \ 0.722 \ -7.259$
0	
	-5.22/ 11.08/ -/.298
11	-0./25 -0.599 -/.3//
0	5.961 12.511 -7.386
0	5.713 -7.235 -7.411
Ti	-0.962 3.086 -7.423
0	5.076 -4.257 -7.435
Ti	4.383 -5.926 -7.459
Ti	-6.031 -2.457 -7.473
0	6.309 1.579 -7.482
Ti	-6.147 1.061 -7.509
Ti	0.845 12.323 -7.506
Ti	-1.165 6.795 -7.595
0	7.740 -5.244 -7.608
0	-0.176 -2.456 -7.609
0	-2 282 -8 322 -7 637
ті	-6 073 -5 952 -7 655
Ti	1 501 -2 103 -7 657
т:	4.301 -2.133 -7.037 6 000 11 373 - 7.662
0	-0.360 11.272 -7.003
0	0.205 5.277 -7.009
	6.142 9.037 -7.671
11	-6.308 4.614 -7.680
0	-0.342 1.258 -7.694
Ti	4.034 8.824 -7.711
Ti	4.402 1.326 -7.754
Ti	-6.803 8.012 -7.771
0	-0.583 4.980 -7.813
0	6.473 -2.162 -7.818
0	-5.561 2.863 -7.862
Ti	4.137 5.138 -7.867
0	-5.433 -0.692 -7.873
Ti	-1.342 10.453 -7.898
0	-5.382 -4.231 -7.982

-8.711 11.952 -7.992
-0.634 8.673 -8.019
4.683 3.366 -8.033
-7.703 -2.454 -8.045
-5.762 6.470 -8.050
4.585 7.063 -8.050
-7.837 -6.180 -8.102
2.537 12.811 -8.104
-7.786 0.999 -8.126
-2.273 -4.374 -8.134
-5.363 -7.583 -8.193
4.525 -0.443 -8.240
2.740 -6.266 -8.273
-2.359 -0.640 -8.318
-2.588 3.021 -8.324
-8.396 7.544 -8.337
2.830 -2.647 -8.418
-2.822 6.773 -8.427
-6.767 9.752 -8.531
-0.649 12.072 -8.550
2.631 1.510 -8.576
-3.013 10.283 -8.601
-7.874 4.424 -8.654
2.458 8.954 -8.658
2.492 5.083 -8.719

C1@Mg-TiO₂

0	-7.875 -0.565	10.041
Н	-9.813 -1.787	9.643
С	-8.157 -1.134	8.998
0	-9.290 -1.836	8.800
Н	-5.810 0.114	8.789
Н	-3.638 1.252	8.501
С	-6.071 -0.419	7.877
С	-7.272 -1.132	7.797
С	-3.313 1.038	7.490
Н	-3.081 -3.714	7.329
Н	-1.383 2.054	7.092
С	-2.216 1.427	6.799
С	-5.248 -0.414	6.765
С	-7.614 -1.819	6.624
Ν	-4.037 0.240	6.613
Н	-4.558 -3.064	6.555
Н	-8.542 -2.380	6.544
С	-3.757 -3.802	6.467
Н	-4.190 -4.808	6.433
Ν	-5.558 -1.072	5.623
С	-6.722 -1.760	5.568
Ν	-2.292 0.860	5.525
С	-3.410 0.119	5.378
Н	-1.626 -5.204	5.375

Ν	-3.015 -3.545 5.238
Н	-6.921 0.853 5.110
н	-0.309 0.676 4.870
н	-7.049 2.617 4.864
C	-1 954 -4 341 4 808
C C	
c	2 240 2 520 4 282
	-3.240 -2.529 4.383
н	-8./13 -3.493 4.3/9
С	-7.101 1.637 4.374
Ν	-6.846 -2.371 4.333
Н	-1.172 2.150 4.309
Fe	-4.400 -0.993 4.102
н	-8.090 1.492 3.921
С	-7.828 -3.209 3.823
С	-1.485 -3.822 3.645
н	-1.555 0.558 3.596
C	-5 813 -2 160 3 /28
N	-2.2012 -2.100 -2.420
N	
	-0.079 1.559 3.334
C	-5.124 0.609 3.228
н	-0.6/0 -4.141 3.009
С	-7.401 -3.548 2.583
Ν	-3.243 -0.853 2.577
Ν	-6.179 -2.913 2.367
С	-2.270 -1.773 2.360
С	-5.997 2.485 2.293
Н	-6.687 3.318 2.216
Ν	-4.437 0.976 2.078
Н	-7.845 -4.200 1.839
С	-3.369 0.175 1.707
С	-4.959 2.124 1.500
С	-1.426 -1.716 1.258
н	-4.446 -2.583 1.254
C	-5 367 -3 166 1 183
н	-5 130 -4 236 1 174
ц	-0.672 -2.477 1.076
с С	-0.073 -2.477 1.070
C 	-1.533 -0.603 0.409
H	-5.921 -2.882 0.279
Н	-2.611 1.217 -0.034
С	-0.652 -0.450 -0.800
0	-0.248 -1.571 -1.253
0	-0.478 0.711 -1.287
MG	-2.421 -2.187 -1.380
Н	-3.459 6.467 -1.700
0	-3.317 -4.384 -2.267
0	2.191 -5.742 -2.285
0	-3.303 -0.560 -2.334
0	-3.479 3.003 -2.337
0	-0.166 -7.579 -2.344
0	-3.670 7.121 -2.406
0	7.163 0.117 -2.418
-	

0	2.124 -2.255 -2.427
0	6.041 -5.178 -2.429
0	1.884 1.539 -2.554
0	-3.609 10.679 -2.602
0	1.620 5.111 -2.684
0	1 532 12 057 -2 695
0	4.332 12.037 - 2.033
0	-3.323 4.942 -2.727
0	-3.416 -8.238 -2.750
0	7.689 -3.010 -2.751
0	1.490 8.835 -2.763
0	7.009 10.667 -2.820
0	-0.176 -4.150 -2.909
0	5.064 -1.942 -2.917
0	7.034 3.567 -2.940
0	-5 422 -2 488 -2 956
0	6 909 6 970 -2 965
0	
0	7.958 -7.377 -2.970
0	4.55/ 8./0/ -2.9/6
Ti	0.524 -5.946 -2.987
0	-5.501 1.177 -2.992
0	4.833 1.670 -3.129
0	4.637 5.192 -3.144
Ti	0.385 -2.248 -3.155
Ti	-4.911 -0.617 -3.169
0	-0.471 3.236 -3.181
0	1 /16 12 783 -3 2/1
Ti	1.410 12.705 5.241 A QEE A 377 2 346
11 T:	-4.033 - 4.277 - 5.240
	6.0/3 -3.460 -3.264
	-5.205 3.127 -3.266
Ti	5.249 10.445 -3.269
Ti	6.217 -6.708 -3.277
0	-6.995 -4.446 -3.285
Ti	0.183 1.358 -3.294
0	-0.619 6.923 -3.299
Ti	5.546 -0.098 -3.335
ті	-1.696 -7.794 -3.344
0	-7 101 -0 705 -3 353
ті	-5 /07 6 615 -3 361
	7 211 6 541 2 296
0	-7.511 0.541 -5.560
11	-5.23/ 10.364 -3.442
0	-6.821 -7.908 -3.452
0	-5.916 8.682 -3.491
0	-6.572 11.668 -3.504
Ti	5.232 6.950 -3.522
Ti	5.382 3.441 -3.524
Ti	-0.006 5.065 -3.545
0	4 448 -7 135 -3 568
0	-7 006 2 07/ -2 601
0	1.000 2.074 - 0.001
	-1.00/ -2.302 -3.01/
11	-2.0/9 -4.1/0 -3.651
0	-0.159 -0.491 -3.661
Ti	-0.113 8.743 -3.726

Ti	-4.953 -7.953 -3.750
Ti	-2.426 3.111 -3.752
0	-1.634 -6.055 -3.819
Ti	3.098 12.304 -3.836
0	-2.096 5.071 -3.839
Ti	-7.302 -2.479 -3.848
0	-1.836 1.296 -3.850
Ti	-2 217 -0 538 -3 861
0	-5 130 -6 152 -3 867
ті	2 201 -5 780 -2 880
0	0.424 = 10.677 = 2.021
О т:	$-0.424 \ 10.077 \ -5.921$
11 T:	-7.509 1.221 -5.929
	8.214 0.193 -3.927
0	3.883 -4.0/1 -3.938
11	3.134 -2.219 -3.939
0	-1.999 12.600 -3.982
0	-2.091 8.796 -4.005
0	3.553 -0.334 -4.011
Ti	-7.230 -6.185 -4.033
Ti	-2.496 6.895 -4.034
Ti	-2.510 10.788 -4.090
Ti	2.890 1.458 -4.093
Ti	2.667 8.704 -4.154
Ti	-7.993 7.992 -4.159
Ti	2.731 5.082 -4.169
0	9.256 -1.308 -4.169
Ti	-8.228 11.226 -4.174
0	9.362 -4.818 -4.210
Ti	-0.156 12 476 -4 213
0	3 232 6 946 -4 217
0	8 862 1 906 -4 261
0	2 220 2 247 -4 282
0	$3.330 \ 3.347 \ 4.202$
0	5.249 10.544 -4.520
О т:	8.02/ 8.04/ -4.329
11	8.854 -0.573 -4.358
0	8./15 5.298 -4.40/
11	/.86/ 10.252 -4.441
0	-8.993 -2.525 -4.450
Ti	8.662 -3.065 -4.489
0	-9.098 1.101 -4.536
0	1.351 -6.151 -4.610
Ti	7.935 6.915 -4.657
Ti	8.081 3.532 -4.669
0	-3.863 -4.011 -4.696
0	-4.007 -0.644 -4.742
0	-9.631 7.491 -4.773
0	1.405 -2.417 -4.772
0	-4.200 3.145 -4.779
0	-8.912 -6.423 -4.803
0	6.594 -0.074 -4.817
0	-4.350 6.713 -4.874
0	1.181 1.421 -4.912
0	6.984 -6.158 -4.976
-	0.001 0.100 1.070

0	-1.244 -8.492 -4.995
0	-4.276 10.600 -4.999
0	-9.787 11.902 -5.023
0	6.014 10.118 -5.036
0	6.723 -3.392 -5.042
0	0.923 5.111 -5.087
0	0.882 8.574 -5.183
0	6.125 3.454 -5.266
0	5,989 6,939 -5,300
0	3 678 13 070 -5 412
0	-1 565 -8 556 -5 112
0	-4.303 -8.330 -3.442
0	-0.801 - 2.403 - 5.704
0	
0	-6.914 1.063 -5.780
0	0.322 13.036 -5.879
0	3.439 -6.139 -5.885
0	-6.850 -5.567 -5.902
0	-1.777 -0.630 -5.905
0	-1.920 3.126 -5.910
0	8.954 -7.425 -5.974
0	-7.788 10.679 -6.000
0	-7.510 7.944 -6.024
0	-2.100 6.883 -6.032
0	3.599 -2.172 -6.071
0	8.073 10.989 -6.132
0	3 444 1 340 -6 199
0	-7 100 1 597 -6 235
0	2012 8566 6217
0	3.043 8.300 -0.247 3 192 10 621 6 366
0	-2.105 10.051 -0.200
U T:	3.18/ 5.10/ -0.308
11	-8.742 -2.369 -6.362
0	8.815 -2.994 -6.360
Ti	-8.865 1.019 -6.410
Ti	-8.691 -5.705 -6.501
0	8.290 3.493 -6.545
0	8.165 7.115 -6.573
0	-4.082 -6.051 -6.582
Ti	-9.442 7.600 -6.646
0	-9.498 -0.736 -6.659
Ti	-9.643 11.105 -6.660
0	-9.445 -4.095 -6.662
Ti	-0.707 -7.990 -6.665
Ti	-3 456 -4 231 -6 769
0	-/ 08/ 1 165 -6 769
ті	1 668 -6 351 -6 771
т	7 38/ _6 755 _6 709
0	1.004 -0.100 -0.100 1.001 -0.100 -0.14
0	-4.UZI -Z.458 -0.811
U	1.2/3 -4.348 -6.828
0	1.133 -8.163 -6.839
0	-9.650 2.637 -6.860
Ti	-3.704 3.020 -6.866
Ti	6.385 10.765 -6.885
Ti	-3.505 -0.619 -6.897

0	-10.129 9.344 -6.901
0	-4.330 4.854 -6.903
Ti	7.153 -3.522 -6.935
Ti	1.794 -2.465 -6.939
0	-10.036 5.847 -6.983
ті	-3 978 6 711 -6 988
0	
0	-0.400 -0.210 -0.989
0	-4.669 8.562 -6.991
0	0.791 10.580 -7.004
Ti	-4.010 10.302 -7.013
Ti	-3.952 -7.827 -7.031
0	1.269 -0.563 -7.039
0	1.033 3.213 -7.060
0	4.282 10.720 -7.091
Ti	1 657 1 348 -7 103
 т:	4 000 12 515 -7 118
11 	6.551 3.319 -7.126
11	-0.661 -4.238 -7.147
Ti	6.474 7.049 -7.157
Ti	-8.996 4.344 -7.183
Ti	1.424 5.039 -7.229
Ti	1.275 8.722 -7.259
0	0.856 6.888 -7.281
0	-5.227 11.687 -7.298
Ti	-0.725 -0.599 -7.377
0	5 961 12 511 -7 386
0	5.501 12.511 7.500
- т:	0.062 2.086 7.422
	5.076 -4.257 -7.435
Ti	4.383 -5.926 -7.459
Ti	-6.031 -2.457 -7.473
0	6.309 1.579 -7.482
Ti	-6.147 1.061 -7.509
Ti	0.845 12.323 -7.506
Ti	-1.165 6.795 -7.595
0	7 740 -5 244 -7 608
0	-0 176 -2 456 -7 609
0	-2 22 -8 222 -7 627
- т:	
11 T:	
11 :	4.501 -2.193 -7.657
11	-6.980 11.272 -7.663
0	6.265 5.277 -7.669
0	6.142 9.037 -7.671
Ti	-6.308 4.614 -7.680
0	-0.342 1.258 -7.694
Ti	4.034 8.824 -7.711
Ti	4.402 1.326 -7.754
Ti	-6.803 8.012 -7.771
0	-0 583 / 080 -7 812
0	6,000 + 0.000 - 7.010
0	0.4/3 -2.102 -7.818
0	-5.561 2.863 -/.862
Π	4.13/ 5.138 -7.867
0	-5.433 -0.692 -7.873

Ti	1.342 10.453 -7.898
0	-5.382 -4.231 -7.982
0	-8.711 11.952 -7.992
0	-0.634 8.673 -8.019
0	4.683 3.366 -8.033
0	-7.703 -2.454 -8.045
0	-5.762 6.470 -8.050
0	4.585 7.063 -8.050
0	-7.837 -6.180 -8.102
0	2.537 12.811 -8.104
0	-7.786 0.999 -8.126
0	-2.273 -4.374 -8.134
0	-5.363 -7.583 -8.193
0	4.525 -0.443 -8.240
0	2.740 -6.266 -8.273
0	-2.359 -0.640 -8.318
0	-2.588 3.021 -8.324
0	-8.396 7.544 -8.337
0	2.830 -2.647 -8.418
0	-2.822 6.773 -8.427
0	-6.767 9.752 -8.531
0	-0.649 12.072 -8.550
0	2.631 1.510 -8.576
0	-3.013 10.283 -8.601
0	-7.874 4.424 -8.654
0	2.458 8.954 -8.658
0	2.492 5.083 -8.719