Lewis Acid (Ni²⁺, Co^{2+/3+} or Zn²⁺) modified Electron-Deficient Ir⁴⁺ in IrO₂/CuO for Promoting Methane Oxidation to Ethanol and Methanol

Le Yang¹, Jinxu Huang¹, Jie Cen², De-Li Chen^{2*}, Hui Zeng¹, Zebao Rui^{1*}, Rafael

Luque^{3,4*}, Peigao Duan⁵

¹ School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, China

² Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China

³ Departamento de Química Orgánica, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014, Cordoba, Spain.

⁴ Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198, Moscow, Russia.

⁵ Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, West Xianning Road, Xi'an, Shaanxi 710049, PR China.

Email address: chendl@zjnu.cn, q62alsor@uco.es, ruizebao@mail.sysu.edu.cn

1.Experimental

1.1. Catalyst preparation

1.1.1. Synthesis of Cu-BTC

In a typical procedure, 0.08 g PVP (k-30) were dissolved in 5 mL methanol solution of trimesic acid (0.35 g) to form mixture A. Then, a 5 mL methanol solution of $Cu(NO_3)_2.3H_2O$ (0.728 g) was added into mixture A to form mixture B, which was kept stirring for 5 min before settling at room temperature for 3 h without stirring. The product was collected by centrifugation, washed several times with methanol, and dried at 60 °C overnight to obtain Cu-BTC.

1.1.2. Synthesis of M-S/Cu-BTC (M=Ni, Co or Zn)

Seed growth was realized by coating Cu-BTC with a thin layer of MO_x via ultrasonication in corresponding acetate/ethanol solution, followed by calcination at 200 °C in N₂.

1.1.3. Synthesis of MO_x/CuO (M=Ni, Co or Zn)

The M-S/Cu-BTC samples were immersed in an aqueous mixture of corresponding nitrate (60 mM) and hexamethylenetetramine (60 mM) for hydrothermal treatment followed by calcination at 500 °C in air for 2 h with a ramp of 10 °C/min.

1.1.4. Synthesis of IrO₂/MO_x/CuO (M=Ni, Co or Zn)

1 wt.% Ir was supported on MO_x/CuO (Ni, Co or Zn) using H_2IrCl_6 aqueous by wet impregnation overnight and dried, followed by calcination in air at 500 °C for 2 h with a ramp of 10 °C/min. The final products were termed as $IrO_2/NiO/CuO$, $IrO_2/Co_3O_4/CuO$ and $IrO_2/ZnO/CuO$, respectively.

1.2. Characterization of the samples

Powder X-ray diffraction (XRD) patterns were collected over the 2-theta range of 5-80° at room temperature with a Philips PW3040/60 automated diffractometer using

monochromated Cu-K α radiation (λ = 1.5418 Å). Diffraction patterns were collected at a scanning rate of 10°/min. The surface electronic states were investigated by X-ray photoelectron spectroscopy (XPS, Thermo VG ESCALAB250 using Al Ka radiation). The XPS data were internally calibrated, fixing the binding energy of C 1s at 284.6 eV. Temperature-programmed reduction of H₂ (H₂-TPR) was conducted by gas chromatograph (GC1690) equipped with a thermal conductivity detector (TCD) in a flow of 5% H₂/Ar (50 ml/min) at temperatures between 40 and 600 °C with a heating rate of 10 °C/min.CH₄-temperature programmed reduction (CH₄-TPR) experiments were conducted on a chemisorption apparatus (Micromeritics Autochem 2920) connected with an online mass spectrometer (HIDEN QIC 20) to analyze the effluent gas. 100 mg of catalyst was placed in a U-shaped quartz tube and heated at a rate of 10 °C /min in a flow of 5% CH₄/He mixture with a flow rate of 30 mL/min. Before measurement, the catalyst was first heated to 200 °C in He for 30 min to remove the surface adsorbates. Bronsted and Lewis acidity of the samples was investigated by FTIR spectroscopy of adsorbed pyridine. FTIR spectra were recorded in a Bruker Vertex spectrometer in adsorbance mode. In a typical experiment, a sample was pressed into a self-supporting wafer with a density of 5-6 mg cm-1. The wafer was placed in a controlled-environment transmission cell equipped with CaF₂ windows. Prior to recording the spectra, the sample was evacuated to 10-3 Pa at 200 °C for 1 h to remove surface molecules and cooled to room temperature in vacuum. The sample was then exposed to 2.67 Pa pyridine and kept for 30 min before temperature was raised to 40 °C. After a hold time of 30 min, the sample was evacuated to 10⁻³ Pa and held for 30 min. Then the spectrum was recorded. The gas products in the head space of the reactor is collected and C₂H₄ was identified using Hiden HPR-20 mass spectrometer (MS).

1.3. Catalytic activity tests

Typically, 10 mg catalyst and 30 mL deionized water was loaded in a 100 mL reactor with PTFE lining (Anhui Kemi Machinery Technology Co., Ltd., Anhui, China; Model MS100-P5-T4-HC1-SV). All parts of the autoclave that directly contacted the reactants were made of Hastelloy. Batch reactor-tests were conducted at a fixed methane pressure of 3 bar and 1 bar air at 150 °C with a reaction time of 3 h unless otherwise specified. All the feedstock components refer to the initial loading at room temperature. After the reaction, the reactor was cooled to room temperature naturally and the liquid product was filtrated through a 0.22 μ m filter using a syringe before collected in a GC vial for further analysis. The effect of CH₄ feeding pressure was checked with the reaction conditions: various CH₄ feeding pressure, 1 bar air, 30 mL water, 150 °C and reaction time of 3 h.

1.4. Product analysis

The liquid product was first analyzed using Bruker 600 MHz ¹H-NMR and ¹²C-NMR. The main products in liquid are methanol and ethanol, and side product is acetaldehyde. These compounds were further checked by comparing their GC signals with those of the model compounds. Quantitative analysis was performed using a Shimadzu GC-2030 equipped with a 50 m×0.2 mm×0.33 µm HP-5 capillary column, a flame ionization detector (FID), and an autoinjector. External standard method was used for the quantification. Each single data point was measured by repeating three times under the same condition. Selectivity of methanol was calculated as (mole of C₂H₅OH)×2/(total carbon mole of liquid products)×100%. Selectivity of ethanol was calculated as (mole of CH₃OH) + (mole of C₂H₅OH).

1.5 Theoretical Details and Models

All of the calculations were performed using density functional theory with Perdew-

Burke-Ernzerhof (PBE)¹ functional combined with the Grimme's corrections for the dispersion energy, *i.e.*, PBE-D3,² as implemented in VASP code.³⁻⁶ The spin-polarized DFT calculations were carried out with a plane-wave expansion cutoff of 500 eV for all of the structural optimizations until the force for each ion is less than 0.05 eV/Å. The IrO₂ bulk was optimized via full relaxation with 9×9×12 Monkhorst-Pack k-point, leading to the optimized lattice parameters of a = 4.48 and c = 3.17 Å, in good agreement with the experimental values of 4.50 and 3.16 Å. In order to uncover the active sites for the formation of methanol and ethanol on IrO₂/CuO/ZnO samples, different theoretical models were built to illustrate the reaction mechanism. The $IrO_2(110)$ surface was considered as the active surface for the activation of $CH_{4,7}$ herein, the surface was modeled by a 4×2 unit cells with a corresponding $2\times 2\times 1$ Monkhorst-Pack k-point mesh. The model consists of 144 atoms. Three layers was modeled to represent the (110) surface with the top two layers allowed to fully relax during the calculations, and the vacuum was set to at least 12 Å. There are coordinatively unsaturated (cus) metal sites on the surface of $IrO_2(110)$, labeled as Ir_{cus} , and O atoms occupy the bridge sites (O_{br}) that connect two Ir sites, as shown in Figure S5. The adsorbed O atoms (either from O_2 or H_2O) occupy the on-top sites above Ir_{cus} sites are labeled as Ot. The Ircus sites were considered as the active adsorption sites for CH₄ molecules. The climbing image nudged elastic band (CI-NEB) method⁸ was used to search the transition states, which were further confirmed by performing the frequency calculations.

The bulk ZnO (Figure S6) was computed using PBE-D3 functional with

Monkhorst-Pack k-point of $11 \times 11 \times 9$, and the optimized lattice parameters are a = 3.27, c = 5.23 Å, $\gamma = 120$, in good agreement with experimental values of a = 3.25, c = 5.21 Å.⁸ The ZnO(100) surface was modeled using six layers slab and a supercell of 3×2 unit cells with vacuum at least 12 Å, and the top three layers were fully relaxed during all of the structural optimizations until the force on each ion is less than 0.05 eV/Å. The model consists of 72 atoms. The Monkhorst-Pack k-point of $2 \times 2 \times 1$ was used to model the slab, and the kinetic cutoff of 500 eV was adopted.

The $Co_3O_4(110)$ was adopted as the model to represent Co_3O_4 surface. The (110) surface has two different termination, *i.e.*, (110)-A termination surface with two types of cations (Co²⁺ and Co³⁺) and one type of anion (Oxygen atom with 3-fold coordination) and (110)-B termination with only one type of cation (Co^{3+}) and two types of anions (Oxygen atoms with 2 and 3 fold coordination). The (110)-B was suggested to be more stable and thus it is used in this study (as shown in Figure S7). The on-site Coulomb repulsion correction term of U within the Hubbard scheme (PBE+U) was used in the 3d electrons of Co. The effective U_{eff} value (U-J) was set to 2.0 eV.⁹ The conventional unit cell was optimized with kinetic cutoff energy of 500 eV using $3 \times 3 \times 3$ k-point mesh sampling, and the obtained lattice parameter constant of 8.09 Å is in good agreement with the experimental value of 8.07 Å.¹⁰ The $Co_3O_4(110)$ surface was modeled by $p(2 \times 1)$ with vaccum of 12 Å, and the surface contains 6 layers with the top three layers fully relaxed and the bottom three layers fixed during all of the calculations. The Monkhorst-Pack k-point of $2 \times 2 \times 1$ was used to model the slab, and the kinetic cutoff of 500 eV was used. The Grimme's correction (D3) was applied to account for the dispersion energy of species on the surface.

The bulk NiO was optimized using PBE+U with $U_{eff} = 6.45$ eV, ¹¹ and the optimized lattice parameter constant was calculated to be 4.17 Å with 9×9×9 k-poing mesh sampling, which is in good agreement with experimental value of 4.17 Å.¹² In this work, NiO(111) is not the major surface and is a second major surface (Figure 1a). However, the NiO(111) has been considered as a typical surface for NiO since it has been reported to adsorb substrates such as water vapor,¹¹ which dissociates rapidly on the NiO(111) surface investigated by DFT method. Therefore, the NiO(111) surface is adopted. The antiferromagnetic NiO(111) surface was model with 7 layers (Figure S7) and the top four layers were allowed to fully relax and the bottom three layers were fixed during the calculations. The Monkhorst-Pack k-point of 2×2×1 was used to model the slab, and the kinetic cutoff of 500 eV was used. The Grimme's correction (D3) was applied to account for the dispersion energy of species on the surface.

Since the CuO(111) is the most stable CuO facet and thus it was used to represent the CuO surface in this study. The effective U_{eff} value of 4.0 eV was applied to simulate CuO.^{13, 14} The bulk CuO with lattice parameter constants of a = 4.65 Å, b = 3.41 Å, c = 5.11 Å (Figure S7) was used to build the CuO(111) slab consists of 9 layers with the top five layers fully relaxed and the bottom four layers fixed during the calculations. The Monkhorst-Pack k-point of $2 \times 2 \times 1$ was used to model the slab, and the kinetic cutoff of 500 eV was used. The Grimme's correction (D3) was applied to account for the dispersion energy of species on the surface.

Table S1. Metal composition evaluated by XPS analysis.

Catalyst	Ir	Cu	Zn/Co/Ni
		wt.%	
IrO ₂ /ZnO/CuO	1.1	28.8	15.3
IrO ₂ /Co ₃ O ₄ /CuO	1.2	31.5	16.1
IrO ₂ /NiO/CuO	1.1	27.3	9.7

Table S2. Concentration of Brønsted and Lewis acid sites (IR spectroscopy of adsorbed pyridine at 40 °C).

Catalyst	BAS (µmol/g)	LAS (µmol/g)	(LAS-BAS)/LAS	
			40 °C	150 °C
IrO ₂ /ZnO/CuO	3.1	45.4	0.93	0.88
IrO ₂ /Co ₃ O ₄ /CuO	6.1	63	0.90	0.85
IrO ₂ /NiO/CuO	32.7	228.4	0.86	0.73
IrO ₂ /CuO	8.9	37.8	0.77	0.62

Table S3. Concentration of Brønsted and Lewis acid sites of $IrO_2/ZnO/CuO$ with

Zn(wt.%) in	BAS (umol/g)	LAS (µmol/g)	(LAS-BA	(LAS-BAS)/LAS	
IrO ₂ /ZnO/CuO	Drib (µmor, g)		40 °C	150 °C	
15.3	3.1	45.4	0.93	0.88	
6.6	4.5	42.4	0.89	0.81	
2.7	5.6	39.8	0.86	0.73	
0	8.9	37.8	0.77	0.62	

different loading of Zn (IR spectroscopy of adsorbed pyridine at 40 °C).

Figure S1. XRD patterns of the corresponding samples after seed growth.

Figure S2. FT-IR spectra of pyridine desorption at 40°.

Figure S3. XPS spectra of Ir 4f on the samples.

Figure S4. CH₄-TPR-MS profiles of the samples.

Figure S5. The top and side views of the model representations for $IrO_2(110)$ surface. The Ir and O atoms are represented by blue and red balls, respectively. O_t : top site, O_{br} : bridge site.

The Zn and O atoms are shown by gray and red balls, respectively.

Figure S7. The models of $Co_3O_4(110)$, NiO(111), and CuO(111) surfaces.

2. Discussion

2.1 Activation of CH₄ molecule

The calculations indicate that there is a large difference of the CH₄ dissociation on $IrO_2(110)$ and ZnO(100). As shown in Figure S8, the energy barrier is 0.36 eV on $IrO_2(110)$, and the dissociation process is exothermic with a value of 0.90 eV. However, on ZnO(100) surface, the CH₄ activation pathway accompanies with a larger energy barrier of 2.29 eV, indicating it is dynamically very difficult for the activation of CH₄ molecule on ZnO(100) surface. Therefore, it is reasonable to expect that the IrO_2 particle is the activation sites for CH₄.

Figure S8. The comparison of the CH_4 activation pathways on $IrO_2(110)$ and ZnO(100).

2.2 Stabilities of different species such as H₂O, O₂, *O, and *OH on the surfaces of IrO₂(110) and ZnO(100).

As shown in Figure S9, the O_2 molecule is adsorbed with a side-on configuration on the top of two neighboring Ir_{cus} sites (* O_2). The computed binding energy for the O_2 molecule is -2.01 eV (more negative value means stronger binding), and the O-O distance is 1.40 Å, larger than the corresponding bond distance of 1.20 Å for O_2 gas molecule, indicating the adsorbed O_2 gas is activated on the surface of $IrO_2(110)$. Furthermore, the dissociation energy of the adsorbed O_2 was computed to be only 0.16 eV, forming two isolated active O (or O_t) sites on the top site of Ir_{cus} , which is lower in energy than the *O₂ state (see Figure S9) by 0.22 eV. The obtained active O_t sites could be treated as the sites for the formation of methanol.

Figure S9. The dissociation pathway of O_2 on $IrO_2(110)$ surface.

The other source of active O_t sites is from the dissociation of H₂O molecule on the surface of IrO₂(110). As shown in Figure S10, the H₂O molecule is adsorbed at the Ir_{cus} site with a binding energy of -1.72 eV, and the dissociation of H₂O is barrierless and the dissociation process is exothermic by 0.23 eV. The adsorbed *OH group on the Ir_{cus} site can be further transferred to *O (Ir_{cus} site) and *H associated to the O_{br} site forming *O_{br}H. Therefore, the O in methanol can be either from O₂ or H₂O. The energy barrier for the H transfer between the O_t and O_{br} is about 0.17 eV, and thus both *O_tH and *O_{br}H should be available on the IrO₂(110) surface.

As a comparison, the binding energy for H_2O on ZnO(100) is about -0.75 eV, much

weaker than that (-1.72 eV) on $IrO_2(110)$ surface. The calculations show that the dissociation of H₂O molecule on ZnO(100) is endothermic with a value of 0.65 eV (see Figure S10), and the energy barrier for the dissociation is 0.73 eV, much higher than that on $IrO_2(110)$, suggesting that the H₂O molecule is adsorbed on the ZnO(100) surface with a moderate binding strength. Therefore, the adsorbed H₂O is thermodynamically stable on ZnO(100), while the H₂O molecule is both thermodynamically and dynamically unstable on $IrO_2(110)$ since it tends to dissociate into active species such as *O or *OH group. This explains why it is the active O_t (or O_tH) involves in the formation of CH₃OH rather than the H₂O molecule directly reacts with the adsorbed C₂H₄ forming C₂H₅OH (Figure 4).

Figure S10. The comparison of the pathways for the dissociation of H_2O molecules on

the $IrO_2(110)$ surface and ZnO(100) surface.

2.3 Competitive Reaction Pathways on IrO₂(110)

Figure S11. Comparison of the competing reaction pathways starting from 2*CH₂. It is noted that the further dehydrogenation of *CH₂ (see structure of 2*CH₂ in Figure S11) to *CH is thermodynamically unfavorable since the process is endothermic by 2.26 eV, with the dehydrogenated H attacking the nearby OH group forming H₂O molecule. In contrast, the pathway for ethylene formation from 2*CH₂ overcomes a much less energy barrier (Figure S11). Therefore, the further dehydrogenation of CH₂ is not considered in this work.

As shown in Figure S12 for the C_2H_4 state, the two C atoms strongly bonds to two Ir_{cus} sites, leading to a large desorption energy of 1.46 eV for the formation of the gas C_2H_4 . The obtained C_2H_4 could either adsorb on ZnO and IrO₂ particles, which will form different products. The C_2H_4 state can be hydrogenated to C_2H_5 with an energy barrier of about 1.41 eV, which is competitive to the desorption energy (1.46 eV). However, the energy barrier to the adsorbed ethanol state (OHC_2H_5) has a much higher value of 2.28 eV, indicating the generation of ethanol on IrO₂(110) is less competitive than the reaction pathways to gas C₂H₄.

The two possible reaction pathways for the ethanol formation are compared, as shown in Figure S12. The *CH₃ can either react with the O_t or O_tH species on IrO₂(110), and the former pathway involves two steps with the kinetic energy up to 1.06 eV, smaller than the latter pathway with kinetic energy of 1.35 eV. Since both O_t and O_tH species are available on IrO₂(110) as discussed above, the *CH₃+*O_t pathway should be the dominant reaction and then the obtained *OCH₃ accepts H from H₂O forming the adsorbed methanol state (*OHCH₃). As the latter pathway only cost 0.29 eV more kinetic energy, indicating methanol can also be produced via *CH₃+*OH pathway.

Figure S12. Several competitive reaction pathways on $IrO_2(110)$. The purple color represents the reaction pathways to the formation of C_2H_4 gas and C_2H_5OH ; the red

color shows the formation of CH_3OH ; the black color is for the formation of C_2H_6 . The top and side views of the structures are shown for the initial states, intermediate states, and final states.

2.4 The Reaction Pathways on ZnO(100) surface

The complete reaction pathways and the structures of different states were summarized in Figure S13. The reaction starts from the adsorbed ethylene state (*C₂H₄*), where the two C atoms binding to O and Zn, respectively, with an adsorption energy of -0.36 eV. With the adsorbed H₂O molecule at neighboring site, the C-Zn bond was activated by transferring H atom from H₂O to the formation of *C₂H₅ state with an energy barrier of 0.63 eV. There are two pathways to proceed, one is the O-Zn cleavage and the other is the direct formation of *OHC₂H₅, the former leads to an upright configuration of *OC₂H₅ state and thus O vacancy is formed, while the latter is a process with C₂H₅ group moving towards the *OH group nearby forming *OHC₂H₅(1) state. Apparently, the O-Zn cleavage undergoes a much lower energy barrier of only 0.72 eV and then proceed to accept another H from H₂O, giving rise to the formation of *OHC₂H₅. The desorption energy of 1.20 eV for the C₂H₅OH from the ZnO(100) surface is also smaller than those for methanol and ethylene on $IrO_2(110)$. Therefore, the formation of ethanol is dynamically competitive on ZnO(100) surface compared to that on $IrO_2(110)$ surface.

2.5 The O-M bond cleavage on different MO_x surfaces

Since the gas C_2H_4 adsorption on $Co_3O_4(110)$, NiO(111), and CuO(111) surfaces have a similar structure compared to ZnO(100), *i.e.*, the two C atoms of C_2H_4 bond to lattice O and Metal, respectively, and thus we performed calculations for the O-Metal bond cleavage on various MO_x surfaces to evaluate the formation of ethanol. As shown in Figure 4C, the energy barriers on ZnO(100), $Co_3O_4(110)$, NiO(111), and CuO(111) surfaces are 0.72, 1.08, 1.29, and 1.58 eV, respectively, in line with the experimental ethanol yield sequence of IrO₂/ZnO/CuO> IrO₂/Co₃O₄/CuO> IrO₂/NiO/CuO> IrO₂/CuO. The excellent agreement between the theory and experiments further confirm that the formation of ethanol should occur on the MO_x surfaces.

Figure S13. The complete pathways for the formation of C_2H_5OH on ZnO(100), as well as the top and side views of the structures for different states.

References:

 Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, 77, 3865–3868.

2. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, S. A Consistent and Accurate Ab Initio Parameterization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. *J. Chem. Phys.* **2010**, *132*, 154104. 3. Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations using a Plane-Wave Basis Set. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1996**, *54*, 11169–11186.

 Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors using a Plane-Wave Basis Set. *Comput. Mater. Sci.* 1996, 6, 15–50.

5. Kresse, G.; Hafner, J. Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal-Amorphous-Semiconductor Transition in Germanium. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1994**, *49*, 14251–14269.

Kresse, G.; Hafner, J. Ab Initio Molecular Dynamics for Liquid Metals. *Phys. Rev. B: Condens. Matter Mater. Phys.* 1993, 47, 558–561.

7. Kim, M.; Franklin, A.; Martin, R.; Feng, F.; Li, T.; Liang Z.; Asthagiri, A.; Weaver,

J. F. Adsorption and Oxidation of CH_4 on Oxygen-Rich IrO2(110). J. Phys. Chem. C **2019**, *123*, 27603-27614.

8. Yang, Z.; Xiong, S.-J. Adsorption of Ag and Au Atoms on Wurtzite ZnO(0001) surface, *Surf. Sci.* **2011**, *604*, 40-45.

9. Hu, W.; Lan, J.; Guo, Y.; Cao, X.-M.; Hu, P. Origin of Efficient Catalytic Combustion of Methane over $Co_3O_4(110)$: Active Low-Coordination Lattice Oxygen and Cooperation of Multiple Active Sites, *ACS Catal.* **2016**, *6*, 5508-5519.

 Hu, L.; Peng, Q.; Li, Y. Selective Synthesis of Co₃O₄ Nanocrystal with Different Shape and Crystal Plane Effect on Catalytic Property for Methane Combustion, *J. Am. Chem. Soc.* 2008, *130*, 16136–16137. Zhao, W.; Bajdich, M. Carey, S.; Vojvodic, A.; Nørskov, J. K.; Campbell, C. T.
Water Dissociation Adsorption on NiO(111): Energetics and Structure of the Hydroxylated Surface, ACS Catal. 2016, 6, 7377-7384.

12. Sawatzky, G. A.; Allen, J. W. Magnitude and Origin of the Band Gap in NiO, *Phys. Rev. Lett.* **1984**, *53*, 2339.

 Song, Y.-Y.; Wang, G.-C. A DFT Study and Microkinetic Simulation of Propylene Partial Oxidation on CuO(111) and CuO(100) Surfaces, *J. Phys. Chem. C*, 2016, *120*, 27430-27442.

14. Åsbrink, S.; Norrby, L.-J. A Refinement of the Crystal Configuration of Copper(II) Oxide with a Discussion of Some Exceptional E.S.D.'S. *Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.* **1970**, *26*, 8-15.