Hierarchically reversible crosslinking polymeric hydrogels with highly efficient self-healing, robust mechanical property, double-driven shape memory behavior

Shishan Xue,^{a, e} Yuanpeng Wu,^{*a, b} Guanfei Liu,^a Meiling Guo,^a Yuhan Liu,^a Tao Zhang^{*c} and Zhanhua Wang^{*d}

^{a.} The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, Sichuan, China. E-mail: ypwu@swpu.edu.cn

^{b.}State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan, China.

^c College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China. E-mail: zhang.tao@suda.edu.cn

^{d.}State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China. E-mail: zhwangpoly@scu.edu.cn

e. School of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang 62100, China

Table S1 The parameters of S _x C _y -hydrogel		
Name of samples	The mass fraction of the P(ATU- <i>co-</i> AM)	Times of freezing- thawing cycles
S ₀ C ₀ -hydrogel	0	0
S _{0.5} C ₀ -hydrogel	0.5%	0
S _{1.0} C ₀ -hydrogel	1.0%	0
S _{2.0} C ₀ -hydrogel	2.0%	0
S ₀ C ₁ -hydrogel	0	1
S _{0.5} C ₁ -hydrogel	0.5%	1
S _{1.0} C ₁ -hydrogel	1.0%	1
S _{2.0} C ₁ -hydrogel	2.0%	1
S ₀ C ₂ -hydrogel	0	2
S _{0.5} C ₂ -hydrogel	0.5%	2
S _{1.0} C ₂ -hydrogel	1.0%	2
S _{2.0} C ₂ -hydrogel	2.0%	2
S ₀ C ₃ -hydrogel	0	3
S _{0.5} C ₃ -hydrogel	0.5%	3
S _{1.0} C ₃ -hydrogel	1.0%	3
S _{2.0} C ₃ -hydrogel	2.0%	3

Fig. S1 FT-IR spectra of PVA-borax hydrogel immersing in (a) acid solution and (b) alkaline solution

Fig. S2 Stress-strain curves of (a) S_0C_y -hydrogel (b) $S_{0.5}C_y$ -hydrogel and (c) $S_{2.0}C_y$ -hydrogel subjected to different freezing-thawing cycles and (d) S_xC_0 -hydrogel (e) S_xC_1 -hydrogel (f) S_xC_2 -hydrogel (g) S_xC_3 -hydrogel with different concentration of copolymer (h) the picture of the $S_{1.0}C_3$ -hydrogel before (i) and (ii) after stretching.

Fig. S3 X-ray diffraction patterns of (a) S_{0.5}C_y-hydrogels, (b) S_{1.0}C_y-hydrogels and (c) S_{2.0}C_y-hydrogels.

Fig. S4 Cyclic tensile of loading-unloading curves of (a) $S_{1.0}C_0$ -hydrogel, (b) $S_{1.0}C_1$ -hydrogel, (c) $S_{1.0}C_2$ -hydrogel and (d) $S_{1.0}C_3$ -hydrogel under the deformation rate of 50 mm min⁻¹

Fig. S5 Cyclic tensile loading–unloading curves of (a) $S_{1.0}C_0$ -hydrogel, (b) $S_{1.0}C_1$ -hydrogel, (c) $S_{1.0}C_2$ -hydrogel and (d) $S_{1.0}C_3$ -hydrogel at the strain of 300% for 20 times under the deformation rate of 50 mm min⁻¹

Fig. S6 (a) The tensile stress (original and self-healed samples) and self-healing efficiency of S_0C_{γ} -hydrogels; (b) The tensile stress (original and self-healed samples) and self-healing efficiency of $S_{0.5}C_{\gamma}$ -hydrogels; (c) The tensile stress (original and self-healed samples) and self-healing efficiency of $S_{2.0}C_{\gamma}$ -hydrogels; (d) the self-healing efficiency of the elongation at break of hydrogels with different content of copolymer and different freezingthawing cycles

Fig. S7 Storage modulus (G') and loss modulus (G'') of (a) S_0C_0 -hydrogel and S_0C_3 -hydrogel, (b) $S_{0.5}C_0$ -hydrogel and $S_{0.5}C_3$ -hydrogel, (c) $S_{1.0}C_0$ -hydrogel and $S_{1.0}C_3$ -hydrogel and (d) $S_{2.0}C_0$ -hydrogel and $S_{2.0}C_3$ -hydrogel

Fig. S8 The photos of PVA/P(ATU-*co*-AM) hydrogel with the "cloud" shape exhibited reversible Ca²⁺ responsiveness. (a) Before immersing in Ca²⁺ solution or after immersing in deionized water; (b) after immersing in Ca²⁺ solution.