Electronic Supplementary Information (ESI)

Bimetal-organic framework derived multi-heterostructured $TiO_2/Cu_xO/C$ nanocomposites with superior photocatalytic H₂ generation performance

Mian Zahid Hussain,^{a, b} Bart van der Linden,^c Zhuxian Yang,^a Quanli Jia,^d Hong Chang,^a Roland A. Fischer,^b Freek Kapteijn,^c Yanqiu Zhu^a and Yongde Xia^{a,*}

^a College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, United Kingdom. Email: <u>Y.Xia@exeter.ac.uk</u>

^b Catalysis Research Center, Technical University of Munich, Garching 85748, Germany

^c Catalysis Engineering, Chemical Engineering Department, Delft University of Technology, van der Maasweg, 9, 2629 HZ Delft, Netherlands

^d Henan Key Laboratory of High Temperature Functional Ceramics, Zhengzhou University, Zhengzhou, 450052, China

Fig. S1 PXRD patterns of as-synthesized NH₂-MIL-125(Ti) and NH₂-MIL-125(Ti/Cu).

Fig. S2 Deconvoluted N 1s XPS spectra of as-prepared NH₂-MIL-125(Ti/Cu).

Fig. S3 TGA profiles of as-prepared NH₂-MIL-125(Ti) and NH₂-MIL-125(Ti/Cu) in air.

Fig. S4 TEM images of (a) TiCuC550, (b) TiCuC700 and (c) TiCuC800.

Fig. S5 (a) N_2 sorption isotherms and (b) Pore size distribution of NH_2 -MIL-125(Ti) and NH_2 -MIL-125(Ti/Cu).

Sample	Specific surface area (m ² g ⁻¹)	Total pore volume (cm ³ g ⁻¹)
NH ₂ -MIL-125(Ti)	1462	0.60
NH ₂ -MIL-125(Ti/Cu)	654	0.38

Table S1 Textural properties of NH₂-MIL-125(Ti) and NH₂-MIL-125(Ti/Cu).

Fig. S6 FTIR spectra of TiCuC550 (black), TiCuC700 (red) and TiCuC800 (blue).

Fig. S7 UV-Vis absorption spectra of NH₂-MIL-125(Ti) and NH₂-MIL-125(Ti/Cu).

Fig. S8 Photos of (a) NH₂-MIL-125(Ti), (b) NH₂-MIL-125(Ti/Cu) and derived composites (c) TiCuC550, (d) TiCuC700 and (e) TiCuC800.

Fig. S9 The proposed schematic of energy band alignments of NH_2 -MIL-125(Ti/Cu) derived nanocomposite TiCuC700. The anatase and rutile TiO₂ polymorphs and Cu₂O/CuO form phase junctions whereas p-n heterojunction is formed between n-type TiO₂ and p-type Cu₂O/CuO causing band bending. The presence of Cu⁰ nanoparticles may facilitate a quick charge transfer from Cu₂O/CuO to anatase TiO₂ and/or functionalized carbon matrix.

Fig. S10 Representative EDX elemental maps of Ti, O, C, N and Cu for sample (a) NH₂-MIL-125(Ti/Cu), (b) TiCuC550 and (c) TiCuC800.

Fig. S11 TXPS depth profiles of the selected sample TiCuC700.

Fig. S12 Photocatalytic setup with HER reaction cell with temperature controller and magnetic stirrer. The HER reaction cell is connected to GC. On the left side, there is a Xe/Hg lamp (500 W) with 285 nm cut-off filter.

Calculation of apparent quantum yield (%) for photocatalytic H₂ evolution

The apparent quantum yield (AQY $_{\lambda}$) can be calculated from the following equation:

$$AQY_{\lambda} = \frac{2 \times number of evolved H_2 molecules}{Total number of incident photons} \times 100 \%$$

And Energy of photon $_{(435 \text{ nm})} = E = \frac{h \times c}{\lambda} = 4.56 \times 10^{-19} \text{ J/photon}$

where E is the energy of the photon, h is Planck's constant (6.63 x 10^{-34} J.sec⁻¹) and c is the speed of light (3 x 10^8 m/sec). The light source is 500 W Xe/Hg lamp (66983, Newport). The light beam is focused with the spot size of 2.23 cm² reaching the reactor window) and an H₂O filter (61945, Newport). The photon count was determined with the help of a photon counter. The absolute irradiance at wavelength $\lambda = 435$ nm in the test facility is 28994.1 μ Wcm⁻²nm⁻¹.

Total no. of photons $_{(435 \text{ nm})} = \frac{Absolute \, Irradiance}{Energy of \, photon} = \frac{28994.1 \, \mu Jsec^{-1}cm^2nm^{-1}}{4.56 \, \times \, 10^{-19}J}$

Total no. of photons $_{(435 \text{ nm})} = 6.35 \times 10^{22} \text{ }\mu\text{s}^{-1}\text{cm}^{2}\text{nm}^{-1}$

Total no. of photons in moles =
$$\frac{No. of photons (\mu s^{-1} cm^2 nm^{-1}) \times (100 \times 10^2)}{N_A}$$

where N_A is Avogadro's number = 6.02×10^{23} mol⁻¹

Total No. of photons in moles = $1055 \mu mols^{-1}m^{-2}nm^{-1}$

Photon count within the irradiated area $(2.23 \text{ cm}^2) = 1055 \mu \text{mols}^{-1}\text{m}^{-2} \times 0.000223 \text{ m}^2$

Total number of incident photons in irradiated area = $0.235 \,\mu mols^{-1}$

The total amount of evolved H₂ molecules for sample TiCuC700 = 3298 μ molg⁻¹h⁻¹

Number of evolved H₂ molecules by the catalyst used (10 mg) = $32.98 \ \mu molh^{-1} = 0.0092 \ \mu mols^{-1}$

$$AQY_{(435 \text{ nm})} = \frac{2 \times 0.0092 \ \mu mols^{-1}}{0.235 \ \mu mols^{-1}} \times 100 \ \%$$

 $AQY_{(435 nm)} = 7.79 \%$

The same calculation was followed to determine the AQY (%) of other samples at 435 nm.

Fig. S13 EIS Nyquist plots of commercial TiO_2 (P-25) under the same potential in 0.5 M H₂SO₄.

Photocatalyst	Morphology	Sacrificial electron donor	Light source	H ₂ evolution (μmol g _{cat} ⁻¹ h ⁻¹)	Stability test Decrease in H ₂ activity (%)	Ref.
0.5Fe/TiO ₂	Disc-like	methanol	500 W Xe/Hg lamp (UV light)	230	NA	1
TiO ₂ @ZIF-8	Hollow nanospheres	methanol	300 W Xenon lamp (UV-light)	261.7	5 cycles (9 %)	2
Cu/TiO ₂	Octahedral shell	methanol	300 W Xe lamp (UV light)	62.16	NA	3
Mixed phase TiO ₂	Disc-like	methanol	300 W Xe lamp (UV-Vis light)	1394	3 cycles (~ 0 %)	4
CuO@MTs (MT = Mesoporous TiO ₂)	Mesoporous tablets	methanol	1000 Wcm ⁻² (Xe lamp)	4760	NA	5
1-D TiO ₂	Nanorods	glycerol	Sun light (10 AM-3 PM)	707	5 cycles (16 %)	6
High pressure hydrogenated TiO_2	Nanoparticles	methanol	100 mWcm ⁻² (Xenon lamp)	220	5 cycles (~ 0 %)	7
Cu-(Ti-MOF)	Disc-like	TEOA	Sun light (88500 lux)	1583.5	5 cycles (56 %)	8
Ternary TiO ₂ /CuO/Cu	Mesoporous nanofibers	methanol	Xenon lamp	851.3	3 cycles (~ 8 %)	9
NiS/CdS/h-TiO ₂	Disc-like	Na ₂ SO ₃ / Na ₂ S	300 W Xenon lamp	2149.15	4 cycles (~ 20 %)	10
Cu ₂ O/TiO ₂ composite	Microcubes	methanol	300 W Xenon lamp	500.4	3 cycles (8 %)	11
NH ₂ -MIL-125(Ti)	Disc-like	CH ₃ CN/ TEA	500 W Xe/Hg lamp (UV-Vis light)	49.3	NA	12
TiO ₂ -Ag-Cu ₂ O	Nanotubes	methanol	350 W Xe arc lamp (UV-Vis light)	874.7	NA	13
Graphene/TiO ₂	Nanosheets	methanol	350 W Xe arc lamp	736	NA	14
TiO ₂ /Cu ₂ O/Cu/C multi- heterojunction	Disc-like	methanol	500 W Xe/Hg lamp (UV-Vis light)	3298	5 cycles (15 %)	This work

Table S2 The photocatalytic HER performance of the selected similar materials reported in the literature.

*NA = Not available

References

- 1 M. J. Valero-Romero, J. G. Santaclara, L. Oar-Arteta, L. van Koppen, D. Y. Osadchii, J. Gascon and F. Kapteijn, *Chem. Eng. J.*, 2019, **360**, 75-88.
- M. Zhang, Q. Shang, Y. Wan, Q. Cheng, G. Liao and Z. Pan, *Appl. Catal. B*, 2019, 241, 149-158.
- 3 R. Li, S. Wu, X. Wan, H. Xu and Y. Xiong, Inorg. Chem. Front., 2016, 3, 104-110.
- 4 S. Kampouri, C. P. Ireland, B. Valizadeh, E. Oveisi, P. A. Schouwink, M. Mensi and K. C. Stylianou, ACS Appl. Energy Mater., 2018, 1, 6541-6548.
- 5 Y.-T. Liao, Y.-Y. Huang, H. M. Chen, K. Komaguchi, C.-H. Hou, J. Henzie, Y. Yamauchi,
 Y. Ide and K. C. W. Wu, ACS Appl. Mater. Interfaces, 2017, 9, 42425-42429.
- 6 N. L. Reddy, D. P. Kumar and M. V. Shankar, J. Chem. Sci., 2016, 128, 649-656.
- N. Liu, C. Schneider, D. Freitag, U. Venkatesan, V. R. R. Marthala, M. Hartmann, B. Winter,
 E. Spiecker, A. Osvet, E. M. Zolnhofer, K. Meyer, T. Nakajima, X. Zhou and P. Schmuki, *Angew. Chem. Int. Ed.*, 2014, 53, 14201-14205.
- 8 P. Karthik, A. R. M. Shaheer, A. Vinu and B. Neppolian, Small, 2020, 16, 1902990.
- 9 H. Hou, M. Shang, F. Gao, L. Wang, Q. Liu, J. Zheng, Z. Yang and W. Yang, ACS Appl. Mater. Interfaces, 2016, 8, 20128-20137.
- 10 N. Li, H. Huang, R. Bibi, Q. Shen, R. Ngulube, J. Zhou and M. Liu, *Appl. Surf. Sci.*, 2019, 476, 378-386.
- 11 Y.-H. Zhang, Y.-L. Li, B.-B. Jiu, F.-L. Gong, J.-L. Chen, S.-M. Fang and H.-L. Zhang, *Nanotechnology*, 2019, **30**, 145401.

- M. A. Nasalevich, C. H. Hendon, J. G. Santaclara, K. Svane, B. van der Linden, S. L. Veber,
 M. V. Fedin, A. J. Houtepen, M. A. van der Veen, F. Kapteijn, A. Walsh and J. Gascon, *Sci. Rep.*, 2016, 6, 23676.
- 13 J. Fu, S. Cao and J. Yu, J. Materiomics, 2015, 1, 124-133.
- 14 Q. Xiang, J. Yu and M. Jaroniec, Nanoscale, 2011, 3, 3670-3678.