Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Surface reconstruction induced in-situ phosphorus doping in nickel oxides for

enhanced oxygen evolution reaction

Weiji Dai ^{a,1}, Xiaowan Bai ^{b,1}, Yin-an Zhu ^a, Yue Zhang ^a, Tao Lu ^a, Ye Pan ^{a,*}, Jinlan Wang ^{b,*}

^a School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Metallic Materials,

Southeast University, Nanjing, 211189, China

^b School of Physics, Southeast University, Nanjing 211189, China

¹Weiji Dai and Xiaowan Bai contributed equally to this work

*Corresponding author: Ye Pan (panye@seu.edu.cn); Jinlan Wang (jlwang@seu.edu.cn)

1. Electrochemical measurements

To prepare the CFP supported Ni₅P₄ (Ni₅P₄@CFP) working electrode, 100 mg of Ni₅P₄ pre-catalyst powders were dispersed in 2 ml ethanol and then ultrasonication for 20 min to get a homogeneous catalyst ink. Subsequently, 10 μ L of the prepared catalyst ink was drop-cast onto a tailored CFP (0.5 × 1 cm² in working area) and dried naturally in the air. Thus, the mass loading of Ni₅P₄ pre-catalyst on the CFP was 1 mg cm⁻². In addition, the NiO@NF and P-NiO@NF were directly used as the working electrodes in this work.

The electrochemical measurements were conducted by using a CHI 660E electrochemistry workstation in standard three-electrode system at room temperature. A saturated Ag/AgCl electrode was used as the reference electrode. To avoid the influence of counter electrode on experimental results, Pt sheet and carbon rod were used as the counter electrode, respectively. OER measurements were performed in 1 M KOH solution (pH = 13.8). The potential values were converted to the potential vs reversible hydrogen electrode (vs RHE) according to the equation: $E(RHE) = E(Ag/AgCl) + 0.0591 \times pH + 0.197$. Cyclic voltammetry (CV) scanning for calculating OER overpotential was conducted without iR compensation. Electrochemical impedance spectroscopy was recorded at the corresponding open circuit potential with an amplitude potential of 5 mV and scanning frequencies ranging from 0.01 Hz to 100 kHz.

2. The calculation details of Gibbs free energies

Computational hydrogen electrode (CHE) [1] model was used to calculate the Gibbs free energy change for OER elementary reactions. At electrode potential U = 0 V (vs. reversible hydrogen electrode, RHE), the Gibbs free energy change (ΔG) can be calculated by

$$\Delta G = \Delta E + \Delta E_{\text{ZPE}} - T \Delta S \tag{1}$$

where ΔE is the energy difference between the products and reactants from DFT computations; ΔE_{ZPE} and ΔS are the changes in zero-point energies and entropy, respectively, which are obtained from the vibrational frequency calculations; *T* is the temperature at 298 K. The energy corrections of gas-phase species in this work, including zero point energies and entropies, are listed in Table S2. The overpotential (η), $\eta = \Delta G_{\text{max}}/e$. where ΔG_{max} is the maximum free energy change among all elementary steps under standard electrode (reduction) potential. Refer to Lee's work in alkaline environment, the oxygen evolution reaction has four elementary steps in alkaline [2]. $\mu e^- - \mu(OH^-) - eU = 9.65$ eV was obtained by repeated calculations under standard electrode (reduction) potential ($E^0 = 0.402$ V) at T=298.15 K.

The adsorption energy of *OH (ΔE) on the catalyst surface was calculated by

in which E(*OH), E(surface) and E(OH) are the total energy of the catalyst surface with adsorbed OH, the catalyst surface and the energy of OH, respectively. Here, $E(OH) = E(H_2O) - 1/2E(H_2)$.

Fig. S1. (a) TEM image of Ni_5P_4 powders synthesized by mechanical alloying. (b) SAED pattern of selected area in Fig. S1a. (c and d) HRTEM images of Ni_5P_4 powders synthesized by mechanical alloying.

Fig. S2. (a) CV scanning curves of Ni_5P_4 @CFP electrode with carbon rod as the counter electrode. (b)

Three-electrode system for OER electrocatalysis with carbon rod as counter electrode.

Fig. S3. (a and b) TEM images of derived NiO nanosheets after OER electrocatalysis.

Fig. S4. (a and b) HRTEM images of derived NiO nanosheets after OER electrocatalysis.

Fig. S5. XPS survey spectra of (a) Ni_5P_4 powders synthesized by ball-milling reaction, (b) Ni_5P_4 powders after the continuous OER electrocatalysis. (c) High resolution XPS spectra of (c) Ni 2p and (d) P 2p for the Ni_5P_4 powders synthesized by ball-milling reaction.

Fig. S6. High-resolution XPS spectra of O 1s for the Ni₅P₄ powders after OER electrocatalysis.

Fig. S7. Illustration of the surface reconstruction induces in-situ P doping into NiO crystal.

Fig. S8. The configurations and formation energies of different P substitution sites on the NiO(110) surface and subsurface. In this calculation, $E_{(P@O/Ni)}$ is the total energy of NiO containing the dopant P and $E_{(NiO)}$ is the total energy of the pure 64-atom NiO. μ_P , μ_O and μ_{Ni} is the chemical potential for black phosphorus, O₂ and metal Ni, respectively.

Fig. S9. The free energy diagram of different P substitution sites on the NiO(110) surface and subsurface at the equilibrium potential $E^0 = 0.402$ V vs NHE.

P-NiO(110)	N _e (e)	Structure	NiO(110)	N _e (e)	Structure
Ni1	-0.68	♦ • 1 • ♦	Ni1	-1.14	0 −1−0
Ni2	-0.67		Ni2	-1.14	$\diamond - \diamond - \diamond$
Р	0.03	♦ 2 ♦	0	1.19	♦ 2 - ♦
P-NiO(110) with OH adsorption	N _e	Structure	NiO(110) with OH adsorption	N _e	Structure
ОН	0.48		ОН	0.57	
Ni1	-0.96		Ni1	-1.21	
Ni2	-0.77	TT	Ni2	-1.21	I J I
Р	-0.02		0	1.22	

Table S1. Bader charge in e for P-NiO(110) and NiO(110) without and with OH adsorption.

Table S2. Total energies (E, eV), zero point energy (ZPE) corrections and entropic contributions (TS) of

 $\mathrm{H}_2\mathrm{O},\,\mathrm{H}_2$ and adsorbates to the free energies.

Species	E (eV)	ZPE (eV)	TS (eV)
H ₂ O (0.035 bar)	-14.22	0.56	0.67
H_2	-6.76	0.27	0.41
	P-Ni	O(110)	
*0		0.05	0.06
*OH		0.38	0.06
*OOH		0.43	0.25
	NiC	D(110)	
*0		0.06	0.06
*OH		0.38	0.06
*OOH		0.45	0.17

Fig. S10. EDS pattern of NiO@NF working electrode.

Fig. S11. EDS pattern of P-NiO@NF working electrode.

Fig. S12. TEM pattern. (a) TEM image of the coral-like materials on P-NiO@NF electrode, (b) SAED

pattern of the coral-like materials on P-NiO@NF electrode as marked in (a).

Fig. S13. (a) XPS survey spectra of NiO@NF and P-NiO@NF working electrodes. (b) High resolution XPS spectra of Ni 2p of NiO@NF electrode. High resolution XPS spectra of (c) Ni 2p and (d) P 2p for P-NiO@NF electrode.

Fig. S14. CV scanning curves of NiO@NF and P-NiO@NF working electrodes with carbon rod as the

counter electrode.

Fig. S15. CV scanning curves with a potential window of 1.00 to 1.08 V (vs RHE) at different scan rates of 10, 20, 30, 40 and 50 mV s⁻¹. (a) NiO@NF working electrode, (b) P-NiO@NF working electrode.

Table	S3 .	Electrochemical	OER	performances	comparison	of	$Ni_5P_4@CFP,$	NiO@NF	and	P-NiO@NI
workii	ng el	ectrodes with son	ne rec	ently reported	catalysts.					

Electrocatalysts	Electrolyte	j/mA cm ⁻²	η/mV	References		
Ni _{0.75} Mn _{0.25} oxides	1M KOH	10	297	ACS Energy Lett. 2018, 3, 2150–2158.		
N-NiO	1М КОН	10	270	ACS Appl. Mater. Interfaces 2019, 11,		
14-1410				30865-30871.		
Cohalt phosphonate (CoPIm)	1M KOH	10	334	Chemical Engineering Journal 396 (2020)		
Cooart phosphonate (Cor mi)				125245.		
P-Cos «NissFers NCs	1М КОН	10	273.1	Sci. China Mater. 2019, 62(9):		
1-000,91410,91 01,2 1403	IW KOII			1285–1296.		
SrCooseFee, PoorOos nanofilm	1M KOH	10	290	Applied Catalysis B: Environmental 272		
51C00.851 C0.11 0.0503-5 nationini				(2020) 119046		
O-NiSe@Ni/SS	1M KOH	10	290	Electrochimica Acta 353 (2020) 136519		
S-CoO _x /NF	1M KOH	10	370	Nano Energy 71 (2020) 104652		
3-D PC-G@NiO nanosheets	1M KOH	10	320	Electrochimica Acta 342 (2020) 136118		
NiCo/NiCoO _x @FeOOH	1М КОН	10	278	Electrochimica Acta 257 (2017) 1–8		
CoO@FeOOH	1M KOH	10	255	Electrochimica Acta 257 (2017) 356–363		
Ni(OH) ₂ nanosheet	1M NaOH	10	295	Nanoscale, 2018, 10, 5054–5059		
Ni ₅ P ₄ @CFP	1М КОН	10	269	This work		
Ni ₅ P ₄ @CFP after OER	1М КОН	10	240	This work		
electrocatalysis	IM KOH	10		T IIIS WOLK		
NiO/NF	1М КОН	10	415	This work		
P-NiO/NF	1М КОН	10	286	This work		

References

- [1]. Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. Energy Environ. Sci.2010, 3, 1311.
- [2]. Lee, C. H.; Jun, B.; Lee, S. U. ACS Sustainable Chemistry & Engineering 2018, 6, 4973.