Supporting Information

Introduction of Secondary Ligand in Titanium-Based Metal-Organic Frameworks for Visible-Light-Driven Photocatalytic Hydrogen Peroxide Production from Dioxygen Reduction

Xiaolang Chen,^a Yasutaka Kuwahara,^{abc} Kohsuke Mori,^{ab} Catherine Louis,^d and Hiromi Yamashita^{*ab}

Xiaolang Chen,^a Yasutaka Kuwahara,^{abc} Kohsuke Mori,^{ab} Catherine Louis,^d and

Hiromi Yamashita*ab

^a Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita,

Osaka 565-0871, Japan.

E-mail: yamashita@mat.eng.osaka-u.ac.jp

- ^b Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
- ° JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- ^d Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), F-75005 Paris, France

Fig. S1 UV-vis DRS of L2.

Fig. S2 ¹H NMR spectra of (a) L1, (b) L2, (c) MIL-125, and (d-g) MIL-125-xL2 (x = 0.035, 0.07, 0.14, and 0.21).

Table S1. The ligand ratios (L1/L2) calculated from ¹H NMR data of digested samples. Molecular formula of MIL-125: $Ti_8O_8(OH)_4(L1)_6$.

Samples	L1/L2	
MIL-125		$Ti_8(L1)_6$
MIL-125-0.035L2	6:0.04	$Ti_8(L1)_6(L2)_{0.04}$
MIL-125-0.07L2	6:0.08	$Ti_8(L1)_6(L2)_{0.08}$
MIL-125-0.14L2	6:0.09	$Ti_8(L1)_6(L2)_{0.09}$
MIL-125-0.21L2	6:0.10	$Ti_8(L1)_6(L2)_{0.10}$

Fig. S3 Photos of MIL-125 and MIL-125-xL2 (x = 0.035, 0.07, 0.14, and 0.21).

Fig. S4 TG and DTA profiles of (a) MIL-125, (b-e) MIL-125-xL2 (x = 0.035, 0.07, 0.14, and 0.21), and (f) L2.

Fig. S5 XRD patterns of MIL-125-0.14L2 after being heated with temperature ramp of 1.0 °C min⁻¹ up to 800 °C in air.

Fig. S6 Recycling tests of H_2O_2 in O_2 -saturated CH_3CN solution (10 mL) of TEOA (2 mL) under photoirradiation ($\lambda > 400$ nm) using 10 mg of MIL-125-0.14L2.

Fig. S7 XRD patterns of MIL-125-0.14L2 after 5 recycling tests.

Fig. S8 (a) N_2 adsorption/desorption isotherms and (b) pore diameter distribution of MIL-125-0.14L2 after 5 recycling tests.

Table S2. BET surface area and V_p of MIL-125-0.14L2 after 5 recycling tests.

Samples	S _{BET} (cm ² g ⁻¹)	D _p (nm)	V _p (cm ³ g ⁻¹)
MIL-125-0.14L2	800	0.70	0.43
After 5 cycles	532	0.70	0.29

Fig. S9 Activity comparison of MIL-125-0.14L2 and MIL-125-NH₂ using TEOA or benzyl alcohol as sacrificial agent after 1 h of reaction. Reaction conditions: 5 mg of MOFs in O₂-saturated CH₃CN solution (5 mL) of TEOA (1 mL), or 10 mg of MOFs in O₂-saturated CH₃CN solution (10 mL) of benzyl alcohol (2 mL) under photoirradiation ($\lambda >$ 420 nm).

Table S3. Comparison of the photocatalytic H_2O_2 production on some of other typical photocatalysts under similar reaction conditions summarized in the recent review report (Angew. Chem. Int. Ed. **2020**, 59, 17356–17376).

Photocatalyst	Sacrificial reagent	Catalyst	Irradiation	Activity of H ₂ O ₂
mesoporous g-C ₃ N ₄	ethanol	4 mg mL ⁻¹	$\lambda > 420 \text{ nm}$	90 µmol (24 h)
(K,P,O)-g-C ₃ N ₄	ethanol	0.5 mg mL ⁻¹	λ≥ 420 nm	1.7 mM (7h)
CoP/g-C ₃ N ₄	ethanol	1.0 mg mL ⁻¹	λ> 420 nm	140 µM (2 h)
Au/g-C ₃ N ₄	2-propanol	1.0 mg mL ⁻¹	UV/Vis	747 µmol (2 h)
KPF ₆ /g-C ₃ N ₄	ethanol	0.5 mg mL ⁻¹	λ> 420 nm	1.5 mM (5 h)
$[Ru^{II}(Me_2phen)_3]^{2+} \qquad \qquad O_2-saturated aqueous \\ H_2SO_4 solution$		1.0 µM	λ> 420 nm	612 µM (9 h)
silica/graphene oxide/CdS	alcohol	0.5 g L ⁻¹	λ= 635 nm	90 µM (1 h)
CdS-graphene	Water + methanol	1.0 mg mL ⁻¹	Solar simulator	128 µM (12 h)
O _V -Bi/Bi ₂ O _{2-x} CO ₃	Water + C_2H_5OH	4.0 mg mL ⁻¹	λ≥ 420 nm	1.2 mM (3 h)
MIL-125-0.14L2	TEOA	1 0 mg mI -1	λ> 400 nm	1654 µM (1 h)
Our work	Benzyl alcohol			1103 µM (1 h)