Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting information

Oxygen-induced defect-healing and photo-brightening of halide perovskite semiconductors: science and application

Like Huang^{a, b} * , Ziyi Ge^{a, c} * , Xiaoli Zhang^d , Yuejin Zhu^b

^aNingbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences (CAS), Ningbo 315201, China. E-mail: huanglike@nbu.edu.cn ^bDepartment of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Zhejiang 315211, China ^cCenter of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China ^dSchool of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China. E-mail: geziyi@nimte.ac.cn

Fig. S1 (A) Oxygen passivation of silicon NCs: (a) Possible surface passivation process during controlled oxidation and (b) Dependence of field effect carrier mobility on Si NC oxidation time. Reprinted with permission from Ref.[1]. Copyright 2014 Elsevier Ltd. (B) Oxygen passivation of Sb₂Se₃ solar cell: (a) *J-V* curves of the CdS/Sb₂Se₃ solar cells grown with oxygen partial pressures varying from 0 to 5.2×10^{-3} Pa and (b) Sketchy band diagram between Sb₂Se₃ and CdS without and with the addition of oxygen in the whole Sb₂Se₃ films deposition. Reprinted with permission from Ref.[2]. Copyright 2015 Wiley-VCH. (C) PL enhancement of monolayer MoS₂ before and after treatment with H₂O₂. Reprinted with permission from Ref.[3]. Copyright 2017 The Royal Society of Chemistry. (D) Oxygen bonding induced strong PL enhancement of MoS₂: charge density difference of O₂ molecule physisorbed on perfect monolayer MoS₂ (a) and chemisorbed on defective monolayer MoS₂ after oxygen plasma irradiation with different durations (c). Reprinted with permission from Ref.[4]. Copyright 2014 American Chemical Society.

Fig. S2 Schematic picture of the dynamic (MA orientation) and static (Cl doping) healing mechanisms. The crossover from spatially localized to delocalized excited states (ES) in defective perovskites is reflected by the extension of charge densities in

the vicinity of the vacancies (shown in magenta color). The electron (hole) density is shown by red (yellow) circles on lead (iodine) ions. Reprinted with permission from Ref.[5]. Copyright 2018 Wiley-VCH.

Fig. S3 (A) UPS spectra of a MAPbI_{3-x}Cl_x perovskite film before (black) and after (red) oxygen exposure to 50 mbar. (a) SECO and same valence band spectra displayed on (b) a linear and (c) a logarithmic intensity scale for valence band onset determination. Reprinted with permission from Ref.[6]. Copyright 2018 Wiley-VCH. (B) Electrochemical process of MAPbI_{3-x}Cl_x under control environment (a) and the evolution of resistance (b, c) and capacitance values (d, e) of MAPbI_{3-x}Cl_x film under different atmosphere. Reprinted with permission from Ref.[7]. Copyright 2016 American Chemical Society.

Fig. S4 Microscale PL properties in dry and humid air. (a) Confocal PL map of a MAPbI₃ film in dry air normalized to the maximum intensity. (b, c) Monitoring the emission (PL count rate) over time under illumination from: (b) a bright grain (blue

circle in (a)) and (c) dark grain (pink circle in (a)) under dry air and under humidified (\approx 45% relative humidity) air. The PL intensity for each trace over time is given relative to the starting value for the bright grain in air, which is normalized to 1. (d, e) PL decays from the same (d) bright and (e) dark grains under dry air before and after the light soaking. (f, g) PL decays from the same bright (f) and dark (g) grains under dry air, humidified air, and after the light soaking in humidified air. (B) Surface atomic and electronic structures. Schematic representation of the local atomic-scale configurations of the surface termination layer (top row) and calculated band structures (bottom row) for the (110) surface of MAPbI₃. (a) Pristine uncharged surface, (b) negatively charged iodine vacancy into which the following molecules are adsorbed; (c) N₂, (d) H₂O, and (e) O₂. Reprinted with permission from Ref.[8]. Copyright 2018 Wiley-VCH.

Fig. S5 (A) Simulated optimized geometry at 0 K (top panel) and a representative snapshot at 300 K of (a) pristine CsPbBr₃ (001) surface, (b) Pb-dimer, and (c) O₂ passivated Pb-dimer, respectively. (B) Charge densities obtained from a representative snapshot at 300 K for the key orbitals participating in charge trapping and recombination of (a) pristine CsPbBr₃ (001), (b) Pb-dimer, and (c) O₂ passivated systems. Reprinted with permission from Ref.[9]. Copyright 2019 American Chemical Society. (C) Projected density of states PDOS of (a) the pristine MAPbI₃ (001) surface, (b) Iv, (c) O₂-doped I_v, and (d) O-doped I_v systems. The Fermi level is set to zero. The superoxide level contributes to the system HOMO. (D) PDOS of the MAPbI₃ (001) system containing the I_v vacancy doped with charged oxygen species: (a) O¹⁻ anion, (b) O²⁻ anion, (c) O₂¹⁻ anion, and (d) O₂²⁻ anion. The Fermi level is set to zero. The corresponding nonradiative electron-hole recombination dynamics. Reprinted with permission from Ref.[10]. Copyright 2019 American Society.

Fig. S6 TRPL for MAI-treated MAPbI₃ films without quencher layer (spiro-MeOTAD) (A) and with spiro-MeOTAD (B). Schematic of the VB alignment between spiro-MeOTAD and MAPbI₃ with and without MAI treatment (C). Reprinted with permission from Ref.[11]. Copyright 2019 American Chemical Society.

Fig. S7 A MAPbBr₃ SC with gold electrodes (a) and its photocurrents (b) measured under cyclical vacuum and atmosphere. Reprinted with permission from Ref.[12]. Copyright 2017 The Author(s). (B) Side-view (a) and structure (b) of a MAPbBr₃ SC device. *I-V* curves of the MAPbBr₃ SC device under dark (c) and under laser illumination (d) in air and vacuum. Variation in PL intensity of MAPbBr₃ SCs from air-vacuum-air environments (e). PL intensity variation in different gases (f).

Reprinted with permission from Ref.[13]. Copyright 2016 The Authors.

REFERENCE

- 1. Y. Ding, M. Sugaya, Q. Liu, S. Zhou, T. Nozaki, Oxygen passivation of silicon nanocrystals: Influences on trap states, electron mobility, and hybrid solar cell performance. Nano Energy **10**, 322-328 (2016).
- X. Liu, C. Chen, L. Wang, J. Zhong, M. Luo, J. Chen, D.-J. Xue, D. Li, Y. Zhou, J. Tang, Improving the performance of Sb₂Se₃ thin film solar cells over 4% by controlled addition of oxygen during film deposition. Progress in Photovoltaics 23, 1828-1836 (2015).
- C. Schwermann, T. Stiehm, P. Tonndorf, R. Schneider, N. Doltsinis, Incorporation of oxygen atoms as a mechanism for photoluminescence enhancement of chemically treated MoS₂. Physical Chemistry Chemical Physics 20 (2018).
- H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, Strong photoluminescence enhancement of MoS₂ through defect engineering and oxygen bonding. ACS Nano 8, 5738-5745 (2014).
- G. Nan, X. Zhang, M. Abdi-Jalebi, Z. Andaji-Garmaroudi, S.D. Stranks, G. Lu, D. Beljonne, How methylammonium cations and chlorine dopants heal defects in lead iodide perovskites. Advanced Energy Materials, 8, 1702754.1-1702754.9 (2018).
- 6. M. Ralaiarisoa, I. Salzmann, F.h. Zu, Effect of water, oxygen, and air exposure on CH₃NH₃PbI_{3-x}Cl_x perovskite surface electronic properties. Advanced Electronic Materials **4** (2018).
- A. Zohar, N. Kedem, I. Levine, D. Zohar, D. Cahen, Impedance spectroscopic indication for solid state electrochemical reaction in CH₃NH₃PbI₃ films. Journal of Physical Chemistry Letters 7, 191-197 (2015).
- 8. R. Brenes, C. Eames, V. Bulović, M.S. Islam, S. Stranks, The impact of atmosphere on the local luminescence properties of metal halide perovskite grains. Advanced Materials **30**, 1706208 (2018).
- 9. L. Qiao, R. Long, Surface Pb-dimer passivated by molecule oxygen notably suppresses charge recombination in CsPbBr₃ Perovskites: Time-domain *ab initio* analysis. Journal of Physical Chemistry Letters **10**, 5499-5506 (2019).
- J. He, W.-H. Fang, R. Long, O.V. Prezhdo, Superoxide/peroxide chemistry extends charge carriers' lifetime but undermines chemical stability of CH₃NH₃PbI₃ exposed to oxygen: Time-domain ab initio analysis. Journal of the American Chemical Society 141, 5798-5807 (2019).
- D. Meggiolaro, E. Mosconi, A. H. Proppe, R. Quintero-Bermudez, S. O. Kelley,
 E. H. Sargent, F. De Angelis, Energy level tuning at the MAPbI₃ perovskite/contact interface using chemical treatment. ACS Energy Letters 4,

2181-2184 (2019).

- 12. H. Zhang, Y. Liu, H. Lu, W. Deng, K. Yang, Reversible air-induced optical and electrical modulation of methylammonium lead bromide (MAPbBr₃) single crystals. Appl. Phys. Lett. **111**, 103904.1-103904.5 (2017).
- 13. H.H. Fang, S. Adjokatse, H. Wei, J. Yang, G.R. Blake, J. Huang, J. Even, M.A. Loi, Ultrahigh sensitivity of methylammonium lead tribromide perovskite single crystals to environmental gases. Science Advances **2**, 1600534 (2016).