Electronic Supplementary Material for:

Alkoxy Substitution on IDT-Series and Y-Series Non-fullerene Acceptors Yielding

Highly Efficient Organic Solar Cells

Yuzhong Chen ${ }^{\text {a }, ~}{ }^{\text {c, }, *, \perp}$, Tao Liu ${ }^{\mathrm{b}, \mathrm{c}, \perp}$, Lik-Kuen Ma ${ }^{\mathrm{b}, \mathrm{c}, \perp}$, Wenyue Xue ${ }^{\mathrm{d}}$, Ruijie Ma ${ }^{\mathrm{b}, \mathrm{c}}$,
 Wong ${ }^{\text {e }}$, Wei Ma ${ }^{\text {d }}$, He Yan ${ }^{\text {b, }, ~, ~ f, ~ *, ~ Y i n g p i n g ~ Z o u ~}{ }^{\text {a }, ~ * ~}$
${ }^{\text {a}}$ College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China

E-mail: yzchenaa@connect.ust.hk; yingpingzou@csu.edu.cn
${ }^{\mathrm{b}}$ Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China

E-mail: jzhangbn@connect.ust.hk; hyan@ust.hk
${ }^{\text {ch }}$ HKUST-Shenzhen Research Institute, No. 9 Yuexing $1{ }^{\text {st }}$ Road, Hi-tech Park, Nanshan, Shenzhen 518057, China
${ }^{\text {d }}$ State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
${ }^{\text {e}}$ Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
${ }^{f}$ Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
\perp These authors contributed equally to this work.

Measurements

General information: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AV-400 MHz NMR spectrometer. Chemical shifts are reported in parts per million (ppm, δ). ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were referenced to tetramethylsilane (0 ppm) for CDCl_{3}. Mass spectra were collected on a MALDI Micro MX mass spectrometer, or an API QSTAR XL System.

Optical characterizations: Film UV-Vis absorption spectra were acquired on a Perkin Elmer Lambda 20 UV/VIS Spectrophotometer. All film samples were spin-cast on ITO substrates. UV-Vis absorption spectra were collected from the solution of three small molecules with a concentration of $0.02 \mathrm{mg} / \mathrm{mL}$ in chloroform. A cuvette with a stopper (Sigma Z600628) was used to avoid volatilization during the measurement.

Electrochemical characterizations: Cyclic voltammetry was carried out on a CHI610E electrochemical workstation with three electrodes configuration, using $\mathrm{Ag} / \mathrm{AgCl}$ as the reference electrode, a Pt plate as the counter electrode, and a glassy carbon as the working electrode. $0.1 \mathrm{~mol} / \mathrm{L}$ tetrabutylammonium hexafluorophosphate in acetonitrile was used as the supporting electrolyte. J71, PM6 and small molecules were drop-cast onto the glassy carbon electrode from chloroform solutions ($5 \mathrm{mg} / \mathrm{mL}$) to form thin films. Potentials were referenced to the ferrocenium/ferrocene couple by using ferrocene as external standards in acetonitrile solutions. The scan rate is 100 mV / s. The HOMO energy levels were determined by $\mathrm{E}_{\text {Hомо }}=-\left[\mathrm{q}\left(\mathrm{E}_{\mathrm{re}}-\mathrm{E}_{\text {ferrocene }}\right)+\right.$ $4.8 \mathrm{eV}]$, while the LUMO energy levels were determined by $\mathrm{E}_{\mathrm{LUMO}}=-\left[\mathrm{q}\left(\mathrm{E}_{\mathrm{ox}}-\right.\right.$ $\left.\left.\mathrm{E}_{\text {ferrocene }}\right)+4.8 \mathrm{eV}\right]$.

DFT calculations: The calculations were performed on a Gauss software package on B3LYP/6-31G* level.

AFM analysis: AFM measurements were performed by using a Scanning Probe Microscope Dimension 3100 in tapping mode. All film samples were spin-cast on ITO substrates.

Device fabrication and characterization: For IDTN-O and IDTN, OSCs were made with a device structure of ITO (indium tin oxide)/PEDOT: PSS(poly(3,4ethylenedioxythiophene): poly (styrene sulfonate))/J71: acceptor/ZrAcAc/Al. For Y6O and Y6, OSCs were made with a device structure of ITO/PEDOT: PSS/PM6: acceptor/PDINO/Al. The patterned ITO-coated glass was scrubbed by detergent and then cleaned inside an ultrasonic bath by using deionized water, acetone, and isopropyl alcohol sequentially and dried overnight in an oven. Before use, the glass substrates were treated in a UV-Ozone Cleaner for 40 min to improve its work function and clearance. A thin PEDOT: PSS (Heraeus Clevios P VPA 4083) layer with a thickness of about 40 nm was spin-coat onto the ITO substrates at 4000 rpm for 40 s , and then dried at $150{ }^{\circ} \mathrm{C}$ for 10 min in air. The PEDOT: PSS coated ITO substrates were transferred to a N_{2}-filled glove box for further processing. Chloroform was chosen as the solvent, and 1-chloronaphthalene (CN) was chosen as the additive $(0.5 \%, \mathrm{v} / \mathrm{v})$ in Y-series acceptors. The concentration of J 71 or PM6 is $8 \mathrm{mg} / \mathrm{mL}$ with the weight ratio of J71 or PM6 and acceptors is 1: 1.2. Then the solution was stirred overnight for intensive mixing in a nitrogen-filled glove box. The blend solution was spin-cast on the top of PEDOT: PSS layer at 2500 rpm for 40 s . Then it was annealed at $85^{\circ} \mathrm{C}$ for 5 min to remove the solvent. Then, the active layer coated substrates were quickly transferred
to a glove-box integrated thermal evaporator for electrode deposition. $\mathrm{ZrAcAc}(10 \mathrm{~nm})$ or PDINO (10 nm) and the Al layer (100 nm) were sequentially evaporated under the vacuum of $5 \times 10^{-5} \mathrm{~Pa}$ through a shadow mask. The optimal blend thickness measured on a Bruker Dektak XT stylus profilometer was about 100 nm . The current-voltage (J V) characteristic curves of all packaged devices were measured by using a Keithley 2400 Source Meter in air. The photocurrent was measured under AM $1.5 \mathrm{G}(100 \mathrm{~mW}$ cm^{-2}) using a Newport solar simulator in an Air. The light intensity was calibrated using a standard Si diode (with KG5 filter, purchased from PV Measurement) to bring spectral mismatch to unity. EQEs were measured using an Enlitech QE-S EQE system equipped with a standard Si diode. Monochromatic light was generated from a Newport 300W lamp source.

SCLC measurements: The electron and hole mobility of IDTN-O, IDTN, Y6-O and Y6 blend films were measured by using the method of space-charge limited current (SCLC). The electron-only SCLC device was a stack of ITO/ZnO/active layer/ ZrAcAc or PDINO/Al, and the hole-only SCLC device was a stack of ITO/PEDOT: PSS/active layer $/ \mathrm{MoO}_{3} / \mathrm{Al}$. The electron-only and hole-only SCLC devices fabricating methods were the same as those for OSCs. The charge carrier mobility was determined by fitting the dark current to the model of a single carrier SCLC according to the equation: $J=9 \varepsilon_{0} \varepsilon_{\mathrm{r}} \mu V^{2} / 8 d^{3}$, where J is the current density, d is the film thickness of the active layer, μ is the charge carrier mobility, ε_{r} is the relative dielectric constant of the transport medium, and ε_{0} is the permittivity of free space. $V=V_{\text {app }}-V_{\mathrm{bi}}$, where $V_{\text {app }}$ is the applied voltage, V_{bi} is the offset voltage. The carrier mobility can be calculated from the slope
of the $J^{1 / 2} \sim V$ curves.
GIWAXS characterization: GIWAXS measurements were performed at beamline 7.3.3 at the Advanced Light Source. ${ }^{1}$ Samples were prepared on Si substrates using identical blend solutions like those used in devices. The 10 keV X-ray beam was incident at a grazing angle of $0.11^{\circ}-0.15^{\circ}$, which maximized the scattering intensity from the samples. The scattered X-rays were detected using a Dectris Pilatus 2 M photon-counting detector. In-plane and out-of-plane sector averages were calculated using the Nika software package. ${ }^{2}$ The uncertainty for the peak fitting of the GIWAXS data is $0.3 \AA$. The coherence length was calculated using the Scherrer equation: $C L=$ $2 \pi K / \Delta q$, where $\Delta \mathrm{q}$ is the full-width at half-maximum of the peak and K is a shape factor (0.90 was used here).

Materials and synthesis

All chemicals, unless otherwise specified, were purchased from Aldrich or other commercial resources and used as received. Compound 1, Compound 2, NC and IDTN were synthesized according to literature. ${ }^{3,4} \mathrm{PM} 6(\mathrm{Mn}=24.2 \mathrm{kDa}$, polydispersity index $=3.6)$ was purchased from Solarmer Energy Inc. Y6 was synthesized according to literature procedure. ${ }^{5,}{ }^{6}$ Y6-O was synthesized with a similar procedure of Y6. The starting materials of 3-methoxythieno[3,2-b]thiophene are commercially available. Toluene and THF were distilled from sodium benzophenone under nitrogen before use.

Scheme S1. The synthetic routes of IDTN-O
Synthesis of compound $\mathbf{3}$
To a solution of compound $\mathbf{1}(450.0 \mathrm{mg}, 1.02 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(46.8 \mathrm{mg}, 0.051 \mathrm{mmol})$ and $\mathrm{P}(o \text {-tol })_{3}(124.2 \mathrm{mg}, 0.408 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$, compound $2(1.87 \mathrm{~g}, 4.08$ mmol) was added under N_{2}. The reaction mixture was stirred for 12 h at $110^{\circ} \mathrm{C}$. Then, the reaction mixture was cooled to r.t. and poured into an aqueous potassium fluoride. The mixture was extracted with ethyl acetate three times. The combined organic phase
was washed with water followed by brine. Then the solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by flash column chromatography (eluent: n-hexane: ethyl acetate $=1: 1$) to get the product as pale yellow solid (493 mg, 55\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta=7.76(\mathrm{~s}, 2 \mathrm{H}), 6.95(\mathrm{~s}, 2 \mathrm{H})$, $4.27(\mathrm{q}, 4 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.81(\mathrm{~s}, 6 \mathrm{H}), 1.19(\mathrm{t}, 6 \mathrm{H}, J=6.8 \mathrm{~Hz}), 0.31(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta=168.1,163.8,143.9,133.8,133.7,131.3,117.0,61.9,59.0$, 14.0, -0.3; MALDI-TOF MS: calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{~S}_{2} \mathrm{Si}_{2}\left(\mathrm{M}^{+}\right)$, 590.1648; found, 590.1671 .

Synthesis of IDT-O

To a solution of 4-hexyl-1-bromobenzene ($817 \mathrm{mg}, 3.4 \mathrm{mmol}$) in THF $(10 \mathrm{~mL})$ at -78 ${ }^{\circ} \mathrm{C}$, n-butyl lithium ($2.0 \mathrm{~mL}, 1.3 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexane) was added under N_{2}. The mixture was kept at $-78{ }^{\circ} \mathrm{C}$ for one hour. Then a solution of compound $\mathbf{3}$ ($370 \mathrm{mg}, 0.42$ $\mathrm{mmol})$ in THF (10 mL) was added slowly. After the addition, the mixture was stirred at room temperature overnight. Water was added and the mixture was stirred for 5 hours. The mixture was extracted three times with ethyl acetate. The combined organic phase was washed with water followed by brine. Then the solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure.

Then the crude was dissolved in $\mathrm{CH}_{3} \mathrm{COOH}(30 \mathrm{~mL})$. The concentrated sulfuric acid $(0.1 \mathrm{~mL})$ was added dropwise to the solution at $0^{\circ} \mathrm{C}$. Then the solution was heated to $40^{\circ} \mathrm{C}$ and stirred for 5 hours. After cooled down to room temperature, the reaction was quenched with water and extracted with ethyl acetate three times. The combined organic phase was washed with water followed by brine. Then the solution was dried
over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was purified by flash column chromatography (eluent: n hexane: toluene $=10: 1$) to get the product as pale yellow solid ($267 \mathrm{mg}, 59 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}$ (400 MHz, $\mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta=7.36$ (s, 2H), 7.24 (d, $8 \mathrm{H}, J=8.0 \mathrm{~Hz}$), 7.07 (d, $8 \mathrm{H}, J=8.0$ $\mathrm{Hz}), 6.17(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H}), 2.60(\mathrm{t}, 8 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.62-1.60(\mathrm{~m}, 8 \mathrm{H}), 1.33-1.32(\mathrm{~m}$, $24 \mathrm{H}), 0.92(\mathrm{t}, 12 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta=154.3,153.8$, $144.1,141.4,140.8,140.7,135.5,128.5,128.1,117.1,88.8,63.6,57.5,35.8,31.9,31.5$, 29.4, 22.8, 14.3; MALDI-TOF MS: calcd for $\mathrm{C}_{66} \mathrm{H}_{78} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{M}^{+}\right)$, 966.5443; found, 966.5469.

Synthesis of IDT-O CHO

To a solution of IDT-O ($60 \mathrm{mg}, 0.060 \mathrm{mmol}$) in THF $(10 \mathrm{~mL}), 1.6 \mathrm{M} n$-butyllithium in hexane ($0.1 \mathrm{~mL}, 0.16 \mathrm{mmol}$) was added dropwise slowly at $-78{ }^{\circ} \mathrm{C}$ under N_{2}. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for one hour, and then anhydrous DMF (0.4 mL) was added. The mixture was stirred overnight at room temperature. Brine was added and the mixture was extracted with ethyl acetate three times. The combined organic phase was washed with water followed by brine. Then the solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by flash column chromatography (eluent: n-hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 1$) to get the product as yellow solid (55 $\mathrm{mg}, 87 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta=10.02(\mathrm{~s}, 2 \mathrm{H}), 7.50(\mathrm{~s}, 2 \mathrm{H}), 7.19(\mathrm{~d}$, $8 \mathrm{H}, J=8.4 \mathrm{~Hz}), 3.79(\mathrm{~s}, 6 \mathrm{H}), 2.60(\mathrm{t}, 8 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.62(\mathrm{~m}, 8 \mathrm{H}), 1.33(\mathrm{~m}, 24 \mathrm{H}), 0.89$ ($\mathrm{t}, 12 \mathrm{H}, J=6.8 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta=180.3,159.0,155.6,149.1$, $146.6,141.6,138.2,135.6,128.2,127.7,127.5,117.6,63.2,63.0,34.9,31.1,30.7$, 28.5, 22.0, 13.5; MALDI-TOF MS: calcd for $\mathrm{C}_{68} \mathrm{H}_{78} \mathrm{O}_{4} \mathrm{~S}_{2}\left(\mathrm{M}^{+}\right)$, 1022.5342; found,

Synthesis of IDTN-O

To a solution of IDT-O CHO ($60 \mathrm{mg}, 0.053 \mathrm{mmol}$) and NC ($102 \mathrm{mg}, 0.53 \mathrm{mmol}$) in dry $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ was added pyridine $(0.1 \mathrm{~mL})$ under N_{2}. The mixture was refluxed for 16 hours and then allowed to cool to room temperature, then the mixture was poured into $\mathrm{CH}_{3} \mathrm{OH}(100 \mathrm{~mL})$ and filtered, the residue left in filter paper was dissolved by CHCl_{3}. After removing the solvent, the residue was purified using column chromatography on silica gel (eluent: n-hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 1$), yielding a dark blue solid ($50 \mathrm{mg}, 64 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta=9.18(\mathrm{~s}, 2 \mathrm{H}), 9.17(\mathrm{~s}, 2 \mathrm{H})$, 8.33 (s, 2H), 8.08 (m, 4H), 7.69 (m, 6H), 7.25 (d, 8H, $J=8.4 \mathrm{~Hz}$), 7.15 (d, 8H, $J=8.4$ $\mathrm{Hz}), 3.54(\mathrm{~s}, 6 \mathrm{H}), 2.61(\mathrm{t}, 8 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.62-1.57(\mathrm{~m}, 8 \mathrm{H}), 1.30-1.28(\mathrm{~m}, 24 \mathrm{H}), 0.88$ ($\mathrm{t}, 12 \mathrm{H}, J=6.8 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta=188.7,164.1,160.7,158.8$, $158.6,147.3,142.7,138.0,137.4,136.2,135.3,134.9,134.8,133.0,130.6,130.2$, $129.7,129.5,128.7,128.5,128.3,126.8,124.3,122.4,118.9,115.6,115.2,67.0,64.0$, 63.8, 35.5, 31.7, 31.2, 29.0, 22.6, 14.1; MALDI-TOF MS: calcd for $\mathrm{C}_{100} \mathrm{H}_{90} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}$ $\left(\mathrm{M}^{+}\right), 1474.6403$; found, 1474.6479 .

Scheme S2. The synthetic routes of Y6-O

Synthesis of compound 4

To a solution of 3-methoxythieno[3,2-b]thiophene ($2 \mathrm{~g}, 11.75 \mathrm{mmol}$) and p toluenesulfonic acid (PTSA) ($223.5 \mathrm{mg}, 1.175 \mathrm{mmol})$ in dry toluene (10 mL), dodecan1 -ol ($4.378 \mathrm{~g}, 23.50 \mathrm{mmol}$) was added under N_{2}. The mixture was refluxed at $90^{\circ} \mathrm{C}$ overnight and then allowed to cool to room temperature. After poured into water, it was extracted for three times with ethyl acetate. The combined organic phase was washed with water followed by brine. Then the solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removing the solvent, the residue was purified using column chromatography on silica gel (eluent: n-hexane: $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}=8: 1, \mathrm{v} / \mathrm{v}\right)$, yielding a colorless oil ($3.11 \mathrm{~g}, 81 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta=7.36(\mathrm{dd}, 1 \mathrm{H}), 7.18(\mathrm{~d}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}), 6.26(\mathrm{~d}, 1 \mathrm{H}, J=1.4 \mathrm{~Hz}), 4.07$ (t, 2H, $J=6.6 \mathrm{~Hz}), 1.87-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.29(\mathrm{~m}, 16 \mathrm{H}), 0.88(\mathrm{t}$, $3 \mathrm{H}, J=6.8 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta=150.2,137.2,130.9,127.3$, 120.3, 98.1, 70.7, 32.1, 29.9-29.4 (m), 26.2, 22.9, 14.3; MALDI-TOF MS: calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{OS}_{2}\left(\mathrm{M}^{+}\right), 324.1582$; found, 324.1589. Synthesis of compound 5

To a solution of compound $4(3.11 \mathrm{~g}, 9.571 \mathrm{mmol})$ in THF at $-78{ }^{\circ} \mathrm{C}, 1.6 \mathrm{M} n$-butyl lithium in hexane ($6.3 \mathrm{~mL}, 10.05 \mathrm{mmol}$) was added dropwise under N_{2}. The reaction mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, and then $\operatorname{TIPSCl}(2.21 \mathrm{~g}, 11.49 \mathrm{mmol})$ was added. The mixture was returned to room temperature and stirred overnight. The reaction was quenched with water and extracted with ethyl acetate for three times. The combined organic phase was washed with water followed by brine. Then the solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by
flash column chromatography (eluent: n-hexane) to get the product as colorless oil (1.83 g, 40\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta=7.35(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 7.18(\mathrm{~d}, 1 \mathrm{H}$, $J=5.2 \mathrm{~Hz}), 4.36(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 1.87-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.34(\mathrm{~m}, 21 \mathrm{H}), 1.20(\mathrm{~d}, 18 \mathrm{H}$, $J=7.4 \mathrm{~Hz}), 0.95(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta=155.3,144.0$, $130.3,127.9,120.1,113.8,71.3,32.1,30.2,29.9-29.5(\mathrm{~m}), 26.1,22.9,19.0,18.5,14.3$, 12.3; MALDI-TOF MS: calcd for $\mathrm{C}_{27} \mathrm{H}_{48} \mathrm{OS}_{2} \mathrm{Si}\left(\mathrm{M}^{+}\right)$, 480.2916; found, 480.2917.

Synthesis of compound 6

To a solution of compound $\mathbf{5}(1.83 \mathrm{~g}, 3.808 \mathrm{mmol})$ in THF at $-7{ }^{\circ} \mathrm{C}, 1.6 \mathrm{M} n$-butyl lithium in hexane ($2.6 \mathrm{~mL}, 4.189 \mathrm{mmol}$) was added dropwise under N_{2}. The reaction mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$, and then 1.0 M trimethyltin chloride in THF (4.57 $\mathrm{mL}, 4.570 \mathrm{mmol}$) was added. The mixture was returned to room temperature and stirred overnight. The reaction was quenched with an aqueous potassium fluoride and extracted with ethyl acetate for three times. The combined organic phase was washed with water followed by brine. Then the solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue as white solid was used directly without further purification. MALDI-TOF MS: calcd for $\mathrm{C}_{30} \mathrm{H}_{56} \mathrm{OS}_{2} \mathrm{SiSn}\left(\mathrm{M}^{+}\right)$, 644.2564; found, 644.2542 .

Synthesis of compound 7

To a solution of 4,7-dibromo-5,6-dinitrobenzo[c][1,2,5]thiadiazole (598.0 mg, 1.558 $\mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(71.3 \mathrm{mg}, 0.078 \mathrm{mmol})$ and $\mathrm{P}(o-\mathrm{tol})_{3}(190.0 \mathrm{mg}, 0.623 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$, compound $5(2.41 \mathrm{~g}, 3.740 \mathrm{mmol})$ was added under N_{2}. The reaction mixture was stirred for 12 hours at $90^{\circ} \mathrm{C}$. Then, the reaction mixture was cooled to
room temperature and poured into an aqueous potassium fluoride. The mixture was extracted with ethyl acetate for three times. The combined organic phase was washed with water followed by brine. Then the solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by flash column chromatography (eluent: n-hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}=8: 1, \mathrm{v} / \mathrm{v}$) to get the product as dark purple oil (1.239 g, 67\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta=7.63(\mathrm{~s}, 2 \mathrm{H}), 4.37(\mathrm{t}, 4 \mathrm{H}$, $J=6.4 \mathrm{~Hz}), 1.85-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.29(\mathrm{~m}, 42 \mathrm{H}), 1.18(\mathrm{~d}, 36 \mathrm{H}, J=7.6 \mathrm{~Hz}), 0.90(\mathrm{t}, 6 \mathrm{H}$, $J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta=155.0,152.3,143.9,142.0,133.9$, $131.2,124.0,121.4,118.6,71.6,32.1,30.2,29.9-29.5(\mathrm{~m}), 26.0,22.9,22.9,19.0,14.3$, 12.3; MALDI-TOF MS: calcd for $\mathrm{C}_{60} \mathrm{H}_{94} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{5} \mathrm{Si}_{2}\left(\mathrm{M}^{+}\right)$, 1182.5315; found, 1182.5319.

Synthesis of compound 8
Compound 7 ($295.0 \mathrm{mg}, 0.2492 \mathrm{mmol}$) and triethyl phosphate $(5 \mathrm{~mL})$ were dissolved in the odichlorobenzene ($o-\mathrm{DCB}, 10 \mathrm{~mL}$) under nitrogen. After being heated at $180^{\circ} \mathrm{C}$ overnight, the solvent was removed to get the crude product.

The red residue was mixed with 1-bromo-2-butyloctane ($1.49 \mathrm{~g}, 5.981 \mathrm{mmol}$), potassium carbonate $(688.8 \mathrm{mg}, 4.984 \mathrm{mmol})$ and potassium iodide $(992.8 \mathrm{mg}, 5.981$ $\mathrm{mmol})$ in DMF $(20 \mathrm{~mL})$ under N_{2}. The mixture was refluxed at $80^{\circ} \mathrm{C}$ overnight. After cooled down to room temperature, the residue was poured into water and extracted with ethyl acetate three times. The combined organic phase was washed with water followed by brine. Then the solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure.

Then the crude was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}) . \mathrm{CF}_{3} \mathrm{COOH}(1 \mathrm{~mL})$ was added to the solution and stirred for 3 hours. After poured into water, it was extracted for three times with chloroform. The combined organic phase was washed with water followed by brine. Then the solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by flash column chromatography (eluent: n-hexane: $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}=3: 1, \mathrm{v} / \mathrm{v}\right)$ to get the product as orange oil (104.2 mg, $\left.37 \%\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta=6.30(\mathrm{~s}, 2 \mathrm{H}), 4.58(\mathrm{~d}, 4 \mathrm{H}, J=7.6 \mathrm{~Hz}), 4.16(\mathrm{t}, 4 \mathrm{H}, J=6.4 \mathrm{~Hz}), 2.10-$ $2.06(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.85(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.38-1.26(\mathrm{~m}, 36 \mathrm{H}), 1.02-0.83(\mathrm{~m}$, $34 \mathrm{H}), 0.70-0.59(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta=151.2,147.6,136.9$, $132.6,131.8,123.0,122.2,111.6,95.8,70.8,55.1,38.7,32.0,31.6,30.4-29.2(\mathrm{~m}), 28.0$, $27.8,26.1,25.3,25.2,22.8,22.7,22.5,22.5,14.2,14.0,13.8,13.77$; MALDI-TOF MS: calcd for $\mathrm{C}_{66} \mathrm{H}_{102} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{5}\left(\mathrm{M}^{+}\right), 1142.6606$; found, 1142.6595 .

Synthesis of compound 9
To a solution of compound $\mathbf{8}(104.2 \mathrm{mg}, 0.09109 \mathrm{mmol})$ in $\mathrm{THF}(10 \mathrm{~mL}), 2.0 \mathrm{M}$ lithium diisopropylamide in hexane $(0.18 \mathrm{~mL}, 0.3643 \mathrm{mmol})$ was added dropwise slowly at $-78^{\circ} \mathrm{C}$ under N_{2}. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , and then anhydrous DMF $(0.4 \mathrm{~mL})$ was added. The mixture was stirred overnight at room temperature. Brine was added and the mixture was extracted with ethyl acetate for three times. The combined organic phase was washed with water followed by brine. Then the solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by flash column chromatography (eluent: n-hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 4, \mathrm{v} / \mathrm{v}$) to get the product as orange solid $(100 \mathrm{mg}, 95 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta=10.10(\mathrm{~s}, 2 \mathrm{H})$,
$4.68(\mathrm{t}, 4 \mathrm{H}, J=6.4 \mathrm{~Hz}), 4.59(\mathrm{~d}, 4 \mathrm{H}, J=7.6 \mathrm{~Hz}), 2.03-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.90(\mathrm{~m}, 4 \mathrm{H})$, $1.59-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.41-1.24(\mathrm{~m}, 36 \mathrm{H}), 1.06-0.81(\mathrm{~m}, 34 \mathrm{H}), 0.69-0.60(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta=181.3,158.8,147.6,136.9,133.3,130.2,129.6$, $128.2,122.2,112.3,73.5,55.5,39.2,32.1,31.7,30.5-29.5$ (m), 28.1, 28.0, 26.0, 25.4, $25.2,22.9,22.9,22.6,14.3,14.1,13.9,13.8 ;$ MALDI-TOF MS: calcd for $\mathrm{C}_{68} \mathrm{H}_{102} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{5}\left(\mathrm{M}^{+}\right), 1198.6505$; found, 1198.6519.

Synthesis of Y6-O

To a solution of compound $9(42.8 \mathrm{mg}, 0.03567 \mathrm{mmol})$ and 2-(5, 6-difluoro-3-oxo-2,3-dihydro-1 H-inden-1-ylidene) malononitrile (IC-2F) $(49.3 \mathrm{mg}, 0.2140 \mathrm{mmol})$ in dry $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ was added pyridine $(0.1 \mathrm{~mL})$ under N_{2}. The mixture was refluxed for 16 hours and then allowed to cool to room temperature, then the mixture was poured into $\mathrm{CH}_{3} \mathrm{OH}(100 \mathrm{~mL})$ and filtered, the residue left in filter paper was dissolved by CHCl_{3}. After removing the solvent, the residue was purified using column chromatography on silica gel (eluent: n-hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 1, \mathrm{v} / \mathrm{v}$), yielding a dark purple solid (37.5 mg, 65\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta=9.35(\mathrm{~s}, 2 \mathrm{H}), 8.54-$ $8.50(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.62(\mathrm{~m}, 2 \mathrm{H}), 4.81(\mathrm{t}, 4 \mathrm{H}, J=6.4 \mathrm{~Hz}), 4.74(\mathrm{~d}, 4 \mathrm{H}, J=6.6 \mathrm{~Hz}), 2.10-$ $2.01(\mathrm{~m}, 6 \mathrm{H}), 1.59-1.57(\mathrm{~m}, 10 \mathrm{H}), 1.43-1.25(\mathrm{~m}, 32 \mathrm{H}), 1.05-0.86(\mathrm{~m}, 32 \mathrm{H}), 0.70-$ $0.64(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta=186.7,162.7,158.8,155.7$, $155.6,155.6,153.1,153.0,152.9,147.6,137.8,137.4,137.0,136.9,134.6,134.6$, $132.1,128.4,120.1,118.0,115.3,115.1,114.9,113.3,112.4,112.2,74.4,67.8,56.0$, $39.5,32.2,31.8,31.8,30.7,30.7,30.6,30.6,29.9,29.8,29.8,29.6,29.6,29.5,28.3$, $28.1,26.0,25.6,25.5,23.1,23.0,22.9,22.7,22.7,14.3,14.2,14.2,14.0,14.0$; MALDI-

TOF MS: calcd for $\mathrm{C}_{92} \mathrm{H}_{106} \mathrm{~F}_{4} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{~S}_{5}\left(\mathrm{M}^{+}\right), 1622.6877$; found, 1622.6931 .

Figure S1. a) Absorption spectra of IDTN-O, IDTN, Y6-O and Y6 in chloroform solution; b) Normalized absorption spectra of J71: IDTN-O, J71: IDTN, PM6: Y6-O and PM6: Y6 blend films.

Figure S2. The CV plots of J71, IDTN-O and IDTN.

Figure S3. The CV plots of PM6, Y6-O and Y6.
a)

b)

Figure S4. Chemical structure of a) J71 and b) PM6.

Figure S5. The AFM height images $(10 \mu \mathrm{~m} \times 10 \mu \mathrm{~m})$: a) a J71: IDTN blend film and b) a J71: IDTN-O blend film; The AFM phase images $(10 \mu \mathrm{~m} \times 10 \mu \mathrm{~m})$: c) a J71: IDTN
blend film and d) a J71: IDTN-O film.

Figure S6. The AFM height images $(10 \mu \mathrm{~m} \times 10 \mu \mathrm{~m})$: a) a PM6: Y6-O blend film and b) a PM6: Y6 blend film; The AFM phase images $(10 \mu \mathrm{~m} \times 10 \mu \mathrm{~m})$: c) a PM6: Y6-O blend film and d) a J71: Y6 blend film.

Figure S7. 2D-GIWAXS patterns: a) a neat J 71 film, b) a neat PM6 film.

Figure S8. a) the hole motilities in J71: IDTN-O and J71: IDTN films; b) the electron motilities in J71: IDTN-O and J71: IDTN films; c) the hole motilities in PM6: Y6-O and PM6: Y6 films; d) the electron motilities in PM6: Y6-O and PM6: Y6 films.

Table S1. The DFT calculation results of IDTN-O and IDTN.

Table S2. The DFT calculation results of Y6-O and Y6.

Molecule	Y6-O	Y6

Top View

$-3.61 \mathrm{eV}$
$-3.75 \mathrm{eV}$

Table S3. The average values and standard deviations of key parameters of IDTN-O, IDTN, Y6-O and Y6 from 20 devices

Active layer	$\boldsymbol{V}_{\text {oc }}(\mathbf{V})$	$\boldsymbol{J}_{\text {sc }}\left(\mathbf{m A} / \mathbf{c m}^{2}\right)$	FF(\%)	PCE(\%)	PCE(max,\%)
J71: IDTN-O	0.90 ± 0.01	17.0 ± 0.2	76.3 ± 0.4	11.7 ± 0.17	12.1
J71: IDTN	0.87 ± 0.01	16.7 ± 0.2	73.3 ± 1.6	10.6 ± 0.17	10.9
PM6: Y6-O	0.95 ± 0.00	22.4 ± 0.1	77.3 ± 0.3	16.4 ± 0.08	16.6
PM6: Y6	0.82 ± 0.00	25.3 ± 0.5	73.4 ± 1.3	15.2 ± 0.44	15.7

Table S4. Morphological parameters obtained from 2D-GIWAXS patterns of J71 and PM6.

sample	in plane				out of plane			
	$\text { Location } / \AA^{-1}$	FWHM	d-	CL/	Location $/ \AA^{-1}$	FWHM	d-	CL/
			spacing/ $/ \AA$	\AA			spacing/ \AA	\AA
J71	0.29	0.119	21.9	50.9	1.65	0.355	3.81	15.9
PM6	0.29	0.086	21.7	65.4	1.65	0.325	3.81	17.4

Table S5. Key photovoltaic parameters found from the $J_{\mathrm{ph}}-V_{\text {eff }}$ curves of IDTN-O, IDTN, Y6-O and Y6 based OCSs.

Active layer	$\left.J_{\mathrm{sat}}{ }^{\mathrm{a}}\right)\left(\mathrm{mA} / \mathrm{cm}^{2}\right)$	$J_{\mathrm{ph}}{ }^{\mathrm{b})}\left(\mathrm{mA} / \mathrm{cm}^{2}\right)$	$J_{\mathrm{ph}}{ }^{\mathrm{c})}$	$\left.J_{\mathrm{ph}}{ }^{\mathrm{b}}\right) / J_{\mathrm{sat}}(\%)$	$\left.J_{\mathrm{ph}}{ }^{\mathrm{c}}\right) / J_{\mathrm{sat}}(\%)$
J71: IDTN-O	18.3	17.2	15.6	93.9	85,2
J71: IDTN	18.2	16.7	15.0	91.7	81.8
PM6: Y6-O	23.6	22.4	20.4	94.9	86.4
PM6: Y6	27.2	25.3	22.8	93.0	83.8

${ }^{\text {a) }}$ The $J_{\text {ph }}$ when $V_{\text {eff }}=3.0 \mathrm{~V}$. ${ }^{\text {b) }}$ The J_{ph} under short current condition. ${ }^{\text {c) }}$ The J_{ph} under maximum power output condition.

Abstract

3

Figure S9. ${ }^{1} \mathrm{HNMR}$ spectrum of compound $\mathbf{3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

3
$\begin{array}{lllllllllllllllll}170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$

Figure S10. ${ }^{13} \mathrm{CNMR}$ spectrum of compound $\mathbf{3}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S11. ${ }^{1} \mathrm{HNMR}$ spectrum of IDT-O $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S12. ${ }^{13} \mathrm{CNMR}$ spectrum of IDT-O $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

IDT-O CHO

Figure S13. ${ }^{1} \mathrm{HNMR}$ spectrum of IDT-O CHO $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S14. ${ }^{13} \mathrm{CNMR}$ spectrum of IDT-O CHO (100 MHz, CDCl_{3}).

Figure S15. ${ }^{1} \mathrm{HNMR}$ spectrum of $\operatorname{IDTN}-\mathbf{O}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S16. ${ }^{13} \mathrm{CNMR}$ spectrum of $\mathbf{I D T N} \mathbf{- O}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S17. MS spectrum (MALDI-TOF) of compound 3.

Figure S18. MS spectrum (MALDI-TOF) of IDT-O.

Figure S19. MS spectrum (MALDI-TOF) of IDT-O CHO.

Figure S20. MS spectrum (MALDI-TOF) of IDTN-O.

Figure S21. ${ }^{1} \mathrm{HNMR}$ spectrum of compound $\mathbf{4}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S22. ${ }^{13} \mathrm{CNMR}$ spectrum of compound $\mathbf{4}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S23. ${ }^{1} \mathrm{HNMR}$ spectrum of compound $\mathbf{5}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S24. ${ }^{13} \mathrm{CNMR}$ spectrum of compound $\mathbf{5}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S25. ${ }^{1} \mathrm{HNMR}$ spectrum of compound $7\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S26. ${ }^{13} \mathrm{CNMR}$ spectrum of compound $7\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S27. ${ }^{1} \mathrm{HNMR}$ spectrum of compound $\mathbf{8}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S28. ${ }^{13} \mathrm{CNMR}$ spectrum of compound $\mathbf{8}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S29. ${ }^{1} \mathrm{HNMR}$ spectrum of compound $9\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S30. ${ }^{13} \mathrm{CNMR}$ spectrum of compound $9\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S31. ${ }^{1} \mathrm{HNMR}$ spectrum of $\mathbf{Y} 6-\mathbf{O}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

1									
180	160	140	120	100	80	60	4	1	

Figure S32. ${ }^{13} \mathrm{CNMR}$ spectrum of $\mathbf{Y} 6-\mathbf{O}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure S33. MS spectrum (MALDI-TOF) of compound 4.

Figure S34. MS spectrum (MALDI-TOF) of compound 5.

Figure S35. MS spectrum (MALDI-TOF) of compound 6.

Figure S36. MS spectrum (MALDI-TOF) of compound 7.

Figure S37. MS spectrum (MALDI-TOF) of compound $\mathbf{8}$.

Figure S38. MS spectrum (MALDI-TOF) of compound $\mathbf{9}$.

Figure S39. MS spectrum (MALDI-TOF) of Y6-O.

Reference

1. A. Hexemer, W. Bras, J. Glossinger, E. Schaible, E. Gann, R. Kirian, A. MacDowell, M. Church, B. Rude and H. Padmore, J. Phys. Conf. Ser., 2010, 247, 012007.
2. J. Ilavsky, J. Appl. Crystallogr., 2012, 45, 324-328.
3. C. e. Zhang, S. Feng, Y. Liu, R. Hou, Z. Zhang, X. Xu, Y. Wu and Z. Bo, ACS Appl. Mater. Interfaces, 2017, 9, 33906-33912.
4. S. Li, L. Ye, W. Zhao, X. Liu, J. Zhu, H. Ade and J. Hou, Adv. Mater., 2017, 29, 1704051.
5. J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li and Y. Zou, Joule, 2019, 3, 1140-1151.
6. J. Yuan, T. Huang, P. Cheng, Y. Zou, H. Zhang, J. L. Yang, S.-Y. Chang, Z. Zhang, W. Huang, R. Wang, D. Meng, F. Gao and Y. Yang, Nat. Commun.,

2019, 10, 570.

