Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Designing of Magnetic MAB Phases for Energy Applications

Chen Shen, Qiang Gao, Nuno M. Fortunato, Harish K. Singh, Ingo Opahle, Oliver Gutfleisch, and Hongbin Zhang*

Institute of Materials Science, TU Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany

E-mail: hzhang@tmm.tu-darmstadt.de

Supporting Information

Computational details and supported figures and tables (a list of figures and tables in the supporting information at page 3)

Computational details

All calculations are carried out using the Vienna ab initio simulation package (VASP) code (version 5.4.4)^{1,2} and associated pseudopotential library version. The exchange-correlation functional under the generalized gradient approximation (GGA) is implemented, as parameterized by Perdew, Burke, and Ernzerhof (PBE)³. The plane-wave energy cutoff and k-mesh density are set as 500 eV and 50 Å⁻¹, respectively. The structure optimization is performed in a two step manner, as detailed in our previous work⁴.

After the optimization of atomic structures, the maximum residual force on each atom is less than 0.001 eVÅ⁻¹. For thermodynamical stability evaluation, we considered only the ferromagnetic configuration, which should be sufficient to evaluate the stabilities, whereas the magnetic ground state will be studied in a succeeding work. The lattice dynamics of targeted phases is studied in the framework of the harmonic approximation, where the phonon spectra are obtained using the frozen phonon approach with the Phonopy⁵ and VASP^{1,2} codes. Within this scheme, the forces on every atom are calculated on the basis of the Hellmann-Feynman theorem by explicitly displacing atoms. To calculate the force constant matrix, $3 \times 3 \times 3$ supercells are used.

For the thermodynamical stable phases, the MAE is calculated using the force theorem⁶ by implementing in full-potential local-orbital (FPLO)⁷ with a k-mesh density of 60 Å⁻¹ to guarantee fine convergence. Finally, we used a simple computational proxy⁸ based on performing nonmagnetic and magnetic density functional theory calculations to study the MCE of MAB phases and Non-MAB phases. This proxy, which Joshua termed the magnetic deformation Σ_M , is a measure of how much the unit cell deforms comparing with the relaxed structures with and without the inclusion of spin polarization. Σ_M appears to correlate very well with experimentally measured magnetic entropy change values, which can be used for screening magnetocaloric compounds. Hence, the calculations for all stable phases are carried out on both the nonmagnetic (NM) and the ferromagnetic (FM) states. For each considered compound, the magnetic deformation Σ_M was calculated following the procedure given in Ref⁸. And all the MAB and Non-MAB phases are presented as $M_xA_yB_z$ in the following parts.

List of figures and tables in the supporting information

Table S1: The novel MAB and Non-MAB phases with convex hull distance < 0.1 eV/atom.

Table S2: The magnetic ground state of stable 212-MAB phases, the stable state of compound is highlighted by blue color.

Table S3: Lattice parameters (Å), total energy E_{tot} (eV/at.) and on-site atomic magnetic moment of Mn, M_{Mn} (μ B) in Mn_2AB_2 with A = Al, Pt and Be.

Table S4: The valence/itinerant electron values adopted in this work.

Table S5: The atomic radius values adopted in this work.

Table S6: The novel MAB and Non-MAB phases with $|K_{i-j}| > 1$ MJ/m³.

Table S7: The novel MAB and Non-MAB phases with uniaxial MAE.

Table S8: The MAE and E_{SOC} for the FeXB (where X are Ni, Pd, and Pt).

Table S9: The novel MAB and Non-MAB phases with larger magnetic deformation Σ_M (>1.5%).

Table S10: Comparing the current MAB results with previous predicted results from Ref. 13.

Figure S0: Antiferromagnetic structure of 212-type MAB (a) intralyer: the antiferromagnetic direction exists in two layers; (b)

interlayer: the antiferromagnetic direction exsts in single layer. The red arrow presents magnetic direction.

Figure S1: Calculated phase diagram of the Fe-Al-B system based on formation energies calculated with VASP. The color scale gives the formation energies in eV per atom. Black lines connect the convex hull. Square means stable compounds and circle means unstable compounds. Dark shadow indicates the high potential stable area.

Figure S2: Phonon bands of unreported MAB and Non-MAB phases.

Figure S3: DOS of predicted non-magnetic MAB phases.

Figure S4: Elements are color-coded as a function of the number of stable compounds with the respective element on the **A** sites. (Above) Histogram representation of number of stable compounds of different systems calculated in this work, purple bar means MAB phases and yellow bar means Non-MAB phases.

Figure S5: The stability map of 212-MAB phases according to the feature factors electronegativity and electron concentration (circle symbols represent unstable phases in the present work; triangle symbols represent possible stable phases with convex hull distance below 100 meV/atom in the present).

Figure S6: The stability map of 414-MAB phases (circle symbols represent unstable phases in the present work; triangle symbols represent possible stable phases with convex hull distance below 100 meV/atom in the present).

Figure S7: COHP of M₄ScB₄ (where M are Cr, Mn, Fe, Co and Ni).

Figure S8: COHP of (upper) M₂AlB₂ (where M are Cr, Mn, Fe, Co and Ni) and (bottom) Fe₂AB₂ (where A are Be, Mg, Ca, Sr and Ba).

Figure S9: The calculated Σ_M for all 434 compounds with convex hull tolerance of ΔE_h meV/atom. Different structures were presented with different color in the square above the figure. Magnetic elements were shown in different symbols. The black bold dash line indicates $\Sigma_M = 1.5$ %; candidates above this line are predicted to show large ΔS_M values.

Description: The thermodynamic stability information are listed in the Table (S1 and S10) and Figure (S1 and S4). The dynamic stability of unreported MAB and Non-MAB phases are shown in Figure S2. The results of effect of magnetic ground state are listed in the Table (S2 and S3) and Figure S0. The information of stability trends and bonding based on the Hume-Rothery rules and COPH are shown in Table (S4 and S5) and Figure (S5, S6, S7, and S8). The information of MAE of MAB and Non-MAB phases are shown in Table (S6, S7, and S8). The information of MAE of MAB and Non-MAB phases are shown in Table S9 and Figure S9. The DOS of predicted non-magnetic MAB phases are shown in Figure S3.

Compounds Space		ce Lattice Constant (Å)			Convex Hull	Formation Energy	Magnetic moment
Compounds	Group	а	b	c	(eV/atom)	(eV/atom)	(µB/Mag)
FeBeB	63	2.925	2.648	12.164	0.000	-0.326	0.422
MnBeB	63	2.809	2.811	12.252	0.000	-0.378	0.002
CrAlB	63	2.969	3.004	13.881	0.011	-0.377	0.011
CoBeB	63	3.058	2.539	12.098	0.014	-0.284	0.087
CoPtB	63	3.133	2.822	14.347	0.037	-0.250	0.092
FeMgB	63	2.902	2.871	17.037	0.040	-0.211	0.908
FeCrB	63	2.912	2.926	13.261	0.041	-0.310	2.254
FeZnB	63	2.904	2.857	14.631	0.045	-0.206	1.151
Cr ₂ B	63	2.900	2.892	13.469	0.047	-0.328	0.002
NiPtB	63	3.053	3.024	14.015	0.048	-0.227	0.002
NiLiB	63	2.996	2.714	15.995	0.052	-0.149	0.003
CrReB	63	2.881	2.905	15.108	0.052	-0.299	0.003
NiCuB	63	3.037	2.881	13.038	0.054	-0.111	0.000
FeMnB	63	2.912	2.904	13.354	0.057	-0.301	3.889
CrBeB	63	2.860	2.860	12.584	0.060	-0.291	0.012
FeIrB	63	2.896	2.856	14.896	0.061	-0.190	1.451
MnIrB	63	2.926	2.925	14.755	0.062	-0.271	1.992
FePtB	63	2.951	2.974	14.720	0.063	-0.242	1.887
CrNiB	63	2.927	2.983	12.697	0.066	-0.297	0.020
MnAlB	63	2.988	2.953	13.908	0.066	-0.329	0.997
FeAlB	63	2.856	2.729	15.972	0.067	-0.281	0.644
Fe ₂ B	63	2.919	2.868	13.357	0.068	-0.244	4.078
CrPtB	63	2.850	3.124	14.749	0.069	-0.330	0.100
NiAuB	63	3.057	2.995	15.082	0.070	-0.095	0.002
NiPdB	63	3.044	2.965	14.116	0.070	-0.211	0.003
FeLiB	63	2.837	2.797	15.498	0.071	-0.180	0.356
CoMgB	63	2.930	2.834	16.933	0.072	-0.201	0.001
MnPtB	63	2.954	3.071	14.596	0.073	-0.340	2.441
CrTcB	63	2.888	2.915	14.819	0.075	-0.289	0.002
CrRhB	63	2.869	2.892	15.040	0.077	-0.295	0.005
NiZnB	63	2.973	2.788	14.808	0.078	-0.132	0.002
NiIrB	63	3.164	2.828	13.941	0.079	-0.139	0.016
CoPdB	63	3.017	2.847	14.528	0.081	-0.217	0.185
CoRhB	63	2.988	2.811	14.250	0.084	-0.191	0.006
MnCoB	63	2.930	2.891	13.195	0.084	-0.255	3.540
NiMnB	63	2.950	2.942	12.894	0.086	-0.278	2.448
CoLiB	63	2.962	2.679	15.351	0.087	-0.186	0.031
CoIrB	63	2.950	2.845	14.489	0.087	-0.186	0.000
MnZnB	63	2.872	2.868	14.626	0.087	-0.246	0.039
FePdB	63	2.946	2.938	14.740	0.088	-0.216	1.739
MnRhB	63	2.938	2.950	14.468	0.089	-0.273	2.236
MnPdB	63	2.958	3.015	14.701	0.090	-0.296	2.435
CrPdB	63	2.913	2.982	14.950	0.091	-0.270	0.185

CoZnB	63	2.980	2.818	14.328	0.092	-0.181	0.002
FeRuB	63	2.863	2.854	14.744	0.095	-0.155	1.528
MnReB	63	2.832	2.790	15.606	0.096	-0.237	0.049
MnMgB	63	2.883	2.887	17.126	0.096	-0.237	0.265
FeNiB	63	2.957	2.896	12.742	0.097	-0.209	1.977
CoCrB	63	2.927	2.963	12.754	0.097	-0.254	1.379
FeRhB	63	2.913	2.866	14.666	0.098	-0.201	1.852
Fe ₂ BeB ₂	65	2.749	2.904	9.947	0.000	-0.344	0.760
Mn ₂ BeB ₂	65	2.815	2.846	9.969	0.000	-0.435	0.011
Fe ₂ AlB ₂	65	2.851	2.916	11.019	0.000	-0.401	1.330
Mn ₂ AlB ₂	65	2.831	2.894	11.080	0.000	-0.471	0.400
Cr ₂ AlB ₂	65	2.932	2.924	11.051	0.000	-0.466	0.010
Cr ₂ SiB ₂	65	2.931	2.923	10.441	0.029	-0.414	0.001
Cr ₂ BeB ₂	65	2.911	2.895	9.911	0.034	-0.387	0.131
Cr ₂ ReB ₂	65	2.916	2.885	11.474	0.034	-0.387	0.006
Fe ₂ MgB ₂	65	2.849	2.895	12.019	0.035	-0.266	0.910
Co ₂ BeB ₂	65	2.542	3.017	10.196	0.043	-0.300	0.016
Cr ₂ TcB ₂	65	2.916	2.887	11.376	0.045	-0.385	0.005
Mn ₂ IrB ₂	65	2.950	2.960	11.131	0.046	-0.354	2.068
Fe ₂ ZnB ₂	65	2.853	2.905	11.158	0.054	-0.248	1.046
Cr ₂ IrB ₂	65	2.933	2.876	11.456	0.055	-0.377	0.009
Ni ₂ LiB ₂	65	2.667	2.999	11.874	0.058	-0.182	0.002
Ni ₂ PtB ₂	65	2.962	3.028	10.878	0.060	-0.214	0.006
Co ₂ AlB ₂	65	2.687	2.971	11.351	0.063	-0.347	0.149
Cr ₂ FeB ₂	65	2.927	2.913	10.586	0.064	-0.357	1.334
Fe ₂ IrB ₂	65	2.878	2.917	11.246	0.065	-0.236	1.684
Ni ₂ CuB ₂	65	2.800	2.995	10.754	0.065	-0.133	0.001
Ni ₂ ZnB ₂	65	2.819	2.977	11.145	0.066	-0.169	0.005
Cr ₃ B ₂	65	2.884	2.901	10.773	0.066	-0.374	0.008
Fe_2PtB_2	65	2.914	2.974	11.188	0.067	-0.267	1.598
Cr ₂ WB ₂	65	2.926	2.899	11.646	0.068	-0.353	0.007
Co ₂ MgB ₂	65	2.795	2.932	12.069	0.069	-0.259	0.017
Cr ₂ MoB ₂	65	2.929	2.903	11.593	0.071	-0.357	0.007
Mn ₂ CoB ₂	65	2.909	2.934	10.500	0.071	-0.336	2.717
Mn ₂ FeB ₂	65	2.906	2.926	10.588	0.071	-0.344	2.830
Mn ₂ RhB ₂	65	2.947	2.961	11.070	0.071	-0.346	2.170
Fe ₃ B ₂	65	2.840	2.931	10.679	0.074	-0.265	2.899
Cr ₂ RuB ₂	65	2.917	2.882	11.312	0.075	-0.346	0.013
Cr ₂ OsB ₂	65	2.916	2.883	11.372	0.077	-0.344	0.007
Mn_2PtB_2	65	3.015	2.984	11.158	0.067	-0.384	2.354
Fe ₂ GaB ₂	65	2.877	2.944	10.995	0.078	-0.237	1.360
Ni ₂ BeB ₂	65	2.712	2.964	10.174	0.080	-0.207	0.001
Ni ₂ PdB ₂	65	2.928	3.019	10.958	0.080	-0.199	0.005
Mn ₂ SiB ₂	65	2.734	2.937	10.668	0.081	-0.354	0.004
Mn ₂ ReB ₂	65	2.907	2.926	11.306	0.081	-0.319	1.647
Cr ₂ RhB ₂	65	2.934	2.877	11.407	0.082	-0.352	0.034
Cr ₂ VB ₂	65	2.908	2.927	10.971	0.083	-0.475	0.005

Ni ₂ AuB ₂	65	2.958	3.044	11.262	0.084	-0.114	0.014
Cr ₂ CoB ₂	65	2.934	2.904	10.520	0.085	-0.336	1.111
Cr ₂ NiB ₂	65	2.971	2.917	10.347	0.085	-0.344	0.009
Co ₂ PtB ₂	65	2.819	3.059	11.026	0.085	-0.252	0.307
Cr_2MnB_2	65	2.885	2.878	10.698	0.087	-0.360	0.034
Fe ₂ ReB ₂	65	2.826	2.870	11.552	0.088	-0.232	1.386
Fe ₂ NiB ₂	65	2.862	2.941	10.376	0.090	-0.244	1.537
Mn ₂ ScB ₂	65	2.891	2.873	12.668	0.092	-0.432	0.323
Cr ₂ PtB ₂	65	3.061	2.881	11.283	0.093	-0.357	0.185
Fe ₂ RhB ₂	65	2.886	2.911	11.204	0.095	-0.248	1.899
Mn ₂ RuB ₂	65	2.929	2.938	11.061	0.096	-0.304	1.798
Mn ₂ NiB ₂	65	2.910	2.953	10.404	0.096	-0.322	2.096
Mn ₂ WB ₂	65	2.790	2.833	12.067	0.099	-0.328	0.006
Mn ₂ TcB ₂	65	2.899	2.927	11.270	0.099	-0.320	1.605
Cr3AlB4	47	2.939	2.939	8.091	0.000	-0.445	0.049
Cr ₂ BeB ₄	47	2.915	2.916	7 571	0.011	-0.403	0.006
Mn2BeB4	47	2.910	2.830	7 591	0.025	-0.364	0.636
Cr ₂ SiB ₄	47	2.954	2.030	7 787	0.035	-0.392	0.010
Mn ₂ AlB	47	2.937	2.910	8 164	0.038	-0.396	0.758
EasPaP.	47	2.052	2.004	7 586	0.038	0.240	1 108
Fe AlD	47	2.955	2.792	7.380 8.140	0.047	-0.240	1.198
G L D	47	2.961	2.818	8.149	0.065	-0.27975	1.255
Cr3lrB4	47	2.911	2.911	8.359	0.067	-0.37507	0.007
Cr ₃ GaB ₄	47	2.948	2.950	8.100	0.071	-0.34263	0.099
Cr ₃ ZnB ₄	47	2.932	2.944	8.162	0.083	-0.33128	0.200
Cr ₃ PtB ₄	47	2.921	2.968	8.335	0.086	-0.36613	0.245
Fe ₃ ZnB ₄	47	2.953	2.851	8.198	0.088	-0.19442	1.364
Fe ₃ IrB ₄	47	2.949	2.854	8.245	0.091	-0.19070	1.436
Fe ₃ MgB ₄	47	2.940	2.855	8.675	0.092	-0.21718	1.259
Mn ₃ IrB ₄	47	2.963	2.966	8.165	0.093	-0.32952	2.219
Mn ₃ PtB ₄	47	2.976	3.011	8.176	0.094	-0.33546	2.258
Mn ₃ SiB ₄	47	2.982	2.824	7.826	0.095	-0.31629	0.975
Cr ₃ B ₅	47	2.922	2.920	7.239	0.095	-0.33817	0.013
Mn_3MgB_4	47	2.911	2.887	8.683	0.098	-0.30260	0.526
Mn ₃ GaB ₄	47	2.940	2.838	8.228	0.099	-0.29042	0.791
Cr ₃ NiB ₄	47	2.936	2.944	7.785	0.099	-0.36333	0.019
Cr ₃ ReB ₄	47	2.916	2.902	8.358	0.099	-0.37916	0.011
Fe_3PtB_4	47	2.961	2.888	8.264	0.099	-0.21703	1.450
Fe ₃ Al ₂ B ₂	65	2.872	2.912	16.537	0.033	-0.393	0.735
Mn ₃ Al ₂ B ₂	65	2.832	2.853	17.788	0.007	-0.406	0.962
Cr ₅ B ₂	65	2.881	2.889	16.320	0.044	-0.277	0.006
Cr ₃ Al ₂ B ₂	65	2.950	2.936	17.311	0.046	-0.326	1.024
Mn ₃ Ir ₂ B ₂	65	3.012	2.979	17.063	0.050	-0.302	2.731
Mn ₃ Rh ₂ B ₂	65	3.022	2.981	16.960	0.052	-0.299	2.968
Co ₃ Al ₂ B ₂	65	2.781	2.931	16.884	0.056	-0.412	0.006
FesB2	65	2.854	2.914	16.253	0.057	-0.211	3.519
Ni2PtaBa	65	2.969	3 077	16 525	0.059	-0.202	0 161
			2.377	10.040	0.007	0.202	0.101

Co ₃ Be ₂ B ₂	65	2.596	2.894	15.185	0.066	-0.287	0.076
$Fe_3Be_2B_2$	65	2.624	2.914	15.157	0.067	-0.266	0.879
Mn ₃ Be ₂ B ₂	65	2.787	2.820	15.315	0.068	-0.321	0.950
Mn ₃ Co ₂ B ₂	65	2.920	2.915	16.092	0.070	-0.248	3.321
Mn ₃ Si ₂ B ₂	65	2.808	2.883	16.009	0.071	-0.391	0.022
Co ₃ Pt ₂ B ₂	65	2.775	3.191	16.604	0.072	-0.195	0.477
Fe ₃ Ir ₂ B ₂	65	2.883	2.912	17.631	0.074	-0.174	2.108
Cr ₃ V ₂ B ₂	65	2.921	2.920	16.757	0.080	-0.397	0.002
Cr ₃ W ₂ B ₂	65	2.980	2.985	17.281	0.082	-0.232	0.004
Ni ₃ Zn ₂ B ₂	65	2.793	2.965	17.255	0.084	-0.174	0.004
Cr ₃ Re ₂ B ₂	65	2.945	2.940	17.330	0.084	-0.230	0.260
Mn ₃ Pt ₂ B ₂	65	2.946	2.940	18.452	0.087	-0.351	2.794
Ni ₃ Al ₂ B ₂	65	2.831	2.961	16.872	0.087	-0.368	0.000
Cr ₃ Tc ₂ B ₂	65	2.942	2.932	17.178	0.088	-0.229	0.234
Fe ₃ Co ₂ B ₂	65	2.859	2.900	16.112	0.088	-0.182	3.101
Cr3Mo2B2	65	2.977	2.976	17.263	0.089	-0.226	0.013
Fe ₃ Zn ₂ B ₂	65	2.816	2.874	17.849	0.090	-0.156	1.484
Fe ₃ Si ₂ B ₂	65	2.762	2.914	16.035	0.091	-0.315	0.819
Cr ₃ Mn ₂ B ₂	65	2.881	2.878	16.063	0.094	-0.240	0.000
Mn ₃ Ga ₂ B ₂	65	2.830	2.848	18.356	0.095	-0.249	1.111
Fe3Rh2B2	65	2,795	2.841	17.976	0.096	-0.172	2.168
Ni ₃ Be ₂ B ₂	65	2.615	2.945	15.349	0.100	-0.240	0.001
Fe ₄ BeB ₄	71	2.821	2.918	17.513	0.000	-0.377	1.017
Fe ₄ AlB ₄	71	2.870	2.927	18.565	0.000	-0.417	1.271
Mn ₄ BeB ₄	71	2.878	2.899	17.591	0.000	-0.467	0.878
Fe ₄ MgB ₄	71	2.875	2.932	19.626	0.000	-0.354	1.391
Cr ₄ AlB ₄	71	2.939	2.920	18.856	0.000	-0.510	0.000
Mn ₄ AlB ₄	71	2.889	2.929	18.591	0.000	-0.500	1.014
Ni ₄ ZnB ₄	71	2.880	2.992	18.517	0.000	-0.261	0.000
Fe ₄ ZnB ₄	71	2.872	2.931	18.726	0.000	-0.348	1.326
Ni ₄ CuB ₄	71	2.875	2.992	18.125	0.000	-0.227	0.000
Ni ₄ PtB ₄	71	2.960	2.995	18.351	0.000	-0.267	0.001
Ni ₄ AuB ₄	71	2.950	3.012	18.793	0.000	-0.224	0.000
Fe4GaB4	71	2.883	2.939	18.557	0.000	-0.343	1.288
Ni ₄ PdB ₄	71	2.931	2.996	18.453	0.000	-0.266	0.001
Fe5B4	71	2.880	2.932	18.163	0.001	-0.354	2.135
Ni ₄ CdB ₄	71	2.914	3.004	19.570	0.001	-0.219	0.001
Fe ₄ IrB ₄	71	2.887	2.930	18.791	0.003	-0.332	1.530
Cr4BeB4	71	2.919	2.896	17.837	0.003	-0.465	0.002
Mn ₄ IrB ₄	71	2.966	2.959	18.716	0.005	-0.439	2.004
Fe4NiB4	71	2.878	2.938	17.924	0.007	-0.346	1.453
Fe ₄ PtB ₄	71	2.914	2.950	18.827	0.009	-0.344	1.565
Ni ₄ AgB ₄	71	2.904	2.997	19.167	0.009	-0.211	0.000
Cr ₄ SiB ₄	71	2.925	2.932	18.249	0.010	-0.470	0.000
Mn ₄ FeB ₄	71	2.929	2.940	18.189	0.013	-0.439	2.237
Ni4BeB4	71	2.828	2.969	17.582	0.013	-0.257	0.000
Mn ₄ CoB ₄	71	2.932	2.949	18.134	0.013	-0.435	2.246

Cr ₄ ReB ₄	71	2.922	2.895	19.306	0.014	-0.454	0.001
Ni ₄ LiB ₄	71	2.812	2.991	19.253	0.015	-0.252	0.000
Co ₄ MgB ₄	71	2.823	2.994	19.214	0.019	-0.346	0.006
Cr ₄ FeB ₄	71	2.925	2.914	18.438	0.019	-0.449	0.668
Mn ₄ RhB ₄	71	2.966	2.962	18.697	0.019	-0.435	2.072
Fe4RhB4	71	2.887	2.933	18.798	0.020	-0.338	1.614
Mn ₄ GaB ₄	71	2.906	2.946	18.573	0.021	-0.423	1.004
Mn ₄ SiB ₄	71	2.885	2.974	17.913	0.022	-0.442	1.124
Cr4IrB4	71	2.927	2.895	19.312	0.023	-0.451	0.002
Co ₄ AlB ₄	71	2.844	2.987	18.182	0.023	-0.387	0.001
Co4BeB4	71	2.787	2,999	17.096	0.024	-0.349	0.006
Cr ₄ TcB ₄	71	2.924	2.898	19.231	0.024	-0.449	0.000
Fe4SiB4	71	2.869	2.938	17.935	0.025	-0.342	1.253
NisB4	71	2.884	2.984	17.819	0.025	-0.251	0.005
Fe4PdB4	71	2.901	2.941	18.845	0.025	-0.327	1.507
Fe4ReB4	71	2.871	2.898	19.036	0.026	-0.322	1.436
Co ₄ ZnB ₄	71	2.817	3.010	18.275	0.027	-0.338	0.001
Mn ₄ NiB ₄	71	2.943	2,959	18.024	0.027	-0.428	1 963
Cr4NiB4	71	2.947	2.908	18.228	0.027	-0.445	0.001
Cr ₅ B ₄	71	2.903	2.905	18.629	0.028	-0.451	0.001
Fe4CoB4	71	2.882	2,933	18 044	0.028	-0.335	1 922
Mn ₄ ReB ₄	71	2.932	2.947	18.884	0.028	-0.416	1.727
Cr4CoB4	71	2.932	2.912	18 356	0.029	-0.439	0.676
Cr4WB4	71	2.925	2.900	19 518	0.029	-0.439	0.000
Fe4LiB4	71	2.856	2.915	19.111	0.029	-0.306	1 385
Mn ₄ ZnB ₄	71	2.919	2.918	18.694	0.030	-0.414	1.103
Co4PtB4	71	2.838	3.054	18.233	0.030	-0.339	0.001
Cr4GaB4	71	2.951	2.924	18.875	0.031	-0.437	0.000
Fe4CuB4	71	2.873	2.935	18.316	0.031	-0.304	1.437
Cr ₄ MoB ₄	71	2.927	2.902	19.483	0.031	-0.442	0.001
Fe ₄ MnB ₄	71	2.877	2.923	18.396	0.032	-0.351	2.163
Mn ₄ MgB ₄	71	2.918	2.921	19.595	0.032	-0.412	0.983
Cr ₄ VB ₄	71	2.916	2.919	18.857	0.033	-0.514	0.001
Mn ₄ PtB ₄	71	2.989	2.978	18.796	0.034	-0.437	2.074
Fe4TcB4	71	2.875	2.904	18.986	0.036	-0.322	1.485
Cr ₄ RhB ₄	71	2.930	2.893	19.287	0.036	-0.439	0.002
Cr4OsB4	71	2.923	2.896	19.189	0.038	-0.430	0.002
Cr ₄ MnB ₄	71	2.906	2.893	18.541	0.038	-0.444	0.181
Fe ₄ RuB ₄	71	2.882	2.922	18.768	0.038	-0.304	1.528
Mn ₄ RuB ₄	71	2.956	2.953	18.649	0.039	-0.405	1.897
Cr ₄ RuB ₄	71	2.924	2.895	19.153	0.039	-0.429	0.003
Mn4OsB4	71	2.953	2.953	18.676	0.040	-0.404	1.867
Fe ₄ CdB ₄	71	2.882	2.939	20.057	0.041	-0.294	1.418
Fe ₄ OsB ₄	71	2.879	2.916	18.762	0.042	-0.293	1.410
Cr ₄ ZnB ₄	71	2.944	2.912	18.995	0.042	-0.426	0.005
Ni ₄ GaB ₄	71	2.931	3.005	18.282	0.043	-0.218	0.000
Ni4IrB4	71	2.922	2.984	18.389	0.045	-0.217	0.000
Ni ₄ MgB ₄	71	2.883	2.986	19.384	0.045	-0.274	0.000
¥							

Mn ₄ TcB ₄	71	2.934	2.949	18.842	0.046	-0.411	1.717
Ni ₄ AlB ₄	71	2.880	2.986	18.490	0.046	-0.273	0.000
Co ₄ NiB ₄	71	2.804	3.033	17.487	0.046	-0.328	0.024
Fe4AuB4	71	2.903	2.952	19.333	0.047	-0.288	1.461
Co ₄ RhB ₄	71	2.828	3.015	18.211	0.049	-0.316	0.024
Cr ₄ PtB ₄	71	2.977	2.900	19.288	0.049	-0.435	0.003
Fe4CaB4	71	2.897	2.947	21.118	0.050	-0.285	1.278
Mn ₅ B ₄	71	2.922	2.941	18.363	0.051	-0.417	2.127
Fe4MoB4	71	2.861	2,896	19 370	0.052	-0.331	1 380
Co4GaB4	71	2.860	3 006	18.043	0.053	-0.321	0.001
Ni4NaB4	71	2.823	3 024	20.975	0.053	-0.177	0.000
Co4PdB4	71	2.836	3 024	18 360	0.054	-0.319	0.003
Fe4WB4	71	2.864	2 890	19 388	0.057	-0.323	1 387
CouIrBa	71	2.804	3.006	18 193	0.057	-0.308	0.016
Mn ₄ WB ₄	71	2.858	2 903	19 560	0.057	-0.403	1 084
Ni InB4	71	2.050	3.024	19.300	0.057	-0.163	0.000
Mn PdB	71	2.936	2 967	18 895	0.060	-0.402	2 017
CriScBi	71	2.970	2.907	20.212	0.061	0.468	0.007
Mn ScB.	71	2.904	2.934	20.212	0.062	0.487	0.007
Fe InB	71	2.925	2.913	10.867	0.063	0.272	1 300
Ni HaD	71	2.091	2.947	19.807	0.065	0.154	0.000
Fa.P.	71	2.945	2 029	16 717	0.000	-0.154	1.046
Fa A aD	71	2.039	2.930	10.717	0.000	-0.209	1.040
N: DbD	71	2.002	2.935	19.044	0.067	-0.209	0.001
Mr. M-D	71	2.904	2.900	10.424	0.067	-0.240	1.064
	/1	2.861	2.902	19.542	0.068	-0.406	1.064
	71	2.878	2.894	19.978	0.068	-0.470	0.955
Fe4NbB4	/1	2.863	2.907	19.876	0.068	-0.381	1.298
CO4L1B4	/1	2.776	2.984	18.980	0.068	-0.297	0.041
Cr ₄ NbB ₄	/1	2.937	2.907	20.085	0.069	-0.464	0.000
Cr4B5	71	2.917	2.906	17.160	0.070	-0.415	0.003
Co ₄ CuB ₄	71	2.799	3.026	17.758	0.070	-0.295	0.001
Mn ₄ NbB ₄	71	2.885	2.894	20.064	0.071	-0.458	0.945
Cr4PdB4	71	2.967	2.907	19.260	0.071	-0.401	0.006
Cr ₄ MgB ₄	71	2.962	2.920	19.743	0.071	-0.397	0.001
Cr4TaB4	71	2.932	2.908	19.968	0.072	-0.480	0.001
Fe ₄ ScB ₄	71	2.863	2.937	20.181	0.072	-0.416	1.154
Co ₅ B ₄	71	2.792	3.032	17.541	0.073	-0.292	0.431
Fe ₄ TaB ₄	71	2.857	2.907	19.773	0.073	-0.386	1.241
Co ₄ CdB ₄	71	2.847	3.007	19.419	0.075	-0.290	0.001
Mn ₄ YB ₄	71	2.954	2.938	21.025	0.075	-0.401	0.958
Mn ₄ CuB ₄	71	2.932	2.951	18.281	0.075	-0.369	1.615
Cr ₄ TiB ₄	71	2.937	2.932	19.267	0.075	-0.530	0.002
Mn ₄ B ₅	71	2.888	2.937	16.811	0.078	-0.379	1.069
Fe ₄ CrB ₄	71	2.868	2.917	18.422	0.080	-0.309	1.811
Co ₄ AuB ₄	71	2.860	3.035	18.681	0.080	-0.285	0.003
Cr ₄ CuB ₄	71	2.944	2.910	18.580	0.082	-0.386	0.037
Mn ₄ VB ₄	71	2.863	2.931	18.869	0.083	-0.459	1.144
Co ₄ FeB ₄	71	2.765	3.047	17.871	0.084	-0.290	0.753

Co ₄ ReB ₄	71	2.811	2.985	18.529	0.084	-0.285	0.000
Fe ₄ YB ₄	71	2.906	2.965	20.832	0.085	-0.334	1.243
Fe ₄ VB ₄	71	2.870	2.912	18.813	0.086	-0.374	1.592
Co ₄ CaB ₄	71	2.837	3.014	20.640	0.087	-0.278	0.245
Fe4GeB4	71	2.903	2.961	18.490	0.088	-0.247	1.372
Mn ₄ CdB ₄	71	2.915	2.918	20.248	0.088	-0.356	0.926
Mn ₄ AuB ₄	71	2.973	2.972	19.285	0.089	-0.355	1.781
Ni ₄ FeB ₄	71	2.874	2.976	18.178	0.090	-0.214	0.633
Mn4CrB4	71	2.897	2.940	18.401	0.090	-0.384	1.619
Co ₄ TcB ₄	71	2.805	2.993	18.540	0.091	-0.285	0.002
Mn ₄ LiB ₄	71	2.902	2.904	18.789	0.092	-0.352	0.881
Mn ₄ InB ₄	71	2.928	2.930	20.097	0.092	-0.352	1.039
Co4RuB4	71	2.830	3.002	18.227	0.093	-0.272	0.003
Co ₄ MnB ₄	71	2.768	3.024	18.463	0.094	-0.292	0.960
Ni ₄ B ₅	71	2.962	2.987	16.367	0.096	-0.124	0.000
Cr ₄ AlB ₆	65	2.943	2.947	21.328	0.012	-0.422	0.003
Cr4BeB6	65	2.925	2.932	20.320	0.020	-0.391	0.013
Cr ₄ SiB ₆	65	2.924	2.961	20.743	0.043	-0.377	0.018
Mn ₄ BeB ₆	65	2.853	2.935	20.351	0.044	-0.341	0.912
Mn ₄ AlB ₆	65	2.869	2.948	21,493	0.055	-0.362	1.071
Cr4IrB6	65	2.930	2.930	21.783	0.060	-0.371	0.008
Cr4GaB6	65	2.955	2.955	21.334	0.062	-0.349	0.003
Cr ₄ ZnB ₆	65	2.951	2.943	21.439	0.066	-0.345	0.004
Cr ₄ PtB ₆	65	2.969	2.938	21.766	0.069	-0.370	0.158
Cr4CuB6	65	2.947	2.941	21.072	0.079	-0.332	0.008
Cr ₄ NiB ₆	65	2.943	2.943	20.747	0.080	-0.365	0.023
Cr ₄ MgB ₆	65	2.958	2.942	22.329	0.082	-0.339	0.004
Cr ₄ B ₇	65	2.929	2.938	19.646	0.085	-0.339	0.011
Mn ₄ IrB ₆	65	2,939	2.960	21.583	0.089	-0.319	1.973
Mn ₄ PtB ₆	65	2.958	2.965	21.737	0.092	-0.322	2.033
Cr ₄ PdB ₆	65	2.965	2.940	21.726	0.092	-0.348	0.036
Cr4OsB6	65	2.918	2.932	21.731	0.093	-0.348	0.004
Fe4BeB6	65	2.803	2.970	20.364	0.093	-0.184	1.242
Mn ₄ SiB ₆	65	2.909	2.964	20.680	0.094	-0.307	1.321
Mn ₄ ZnB ₆	65	2.893	2.938	21.635	0.094	-0.291	1.085
Mn4GaB6	65	2.884	2.953	21.564	0.097	-0.288	1.153
Cr ₄ FeB ₆	65	2.930	2.950	20.905	0.099	-0.366	0.726
Mn4MgB6	65	2.897	2.935	22.512	0.099	-0.303	0.996
Cr4AuB6	65	2.961	2.945	22.225	0.100	-0.311	0.011
Cr ₅ B ₃	140	5.431	5.431	9.923	0.000	-0.418	0.000
Fe ₅ BeB ₂	140	5.455	5.455	9.914	0.000	-0.292	1.932
Fe ₅ SiB ₂	140	5.509	5.509	10.299	0.003	-0.359	1.731
Mn ₅ SiB ₂	140	5.559	5.559	10.293	0.003	-0.415	1.583
Cr ₅ BeB ₂	140	5.500	5.500	10.002	0.008	-0.313	0.001
Fe ₅ B ₃	140	5.337	5.337	9.959	0.020	-0.308	1.837
Mn ₅ GeB ₂	140	5.624	5.624	10.504	0.020	-0.303	1.731
-							

Fe5GeB2	140	5.553	5.553	10.576	0.024	-0.242	1.825
Ni ₅ SiB ₂	140	5.510	5.510	10.110	0.031	-0.367	0.002
Cr ₅ PB ₂	140	5.537	5.537	10.317	0.033	-0.474	0.022
Fe ₅ PB ₂	140	5.444	5.444	10.303	0.033	-0.392	1.705
Mn ₅ PB ₂	140	5.509	5.509	10.287	0.033	-0.480	1.665
Ni ₅ B ₃	140	5.191	5.191	10.296	0.036	-0.253	0.000
Mn ₅ B ₃	140	5.352	5.352	9.990	0.037	-0.391	1.433
Cr ₅ AsB ₂	140	5.603	5.603	10.619	0.038	-0.292	0.098
Ni5BeB2	140	5.443	5.443	9.757	0.039	-0.299	0.000
Mn ₅ BeB ₂	140	5.456	5.456	9.916	0.040	-0.309	1.337
Co ₅ GeB ₂	140	5.545	5.545	10.187	0.040	-0.224	0.462
Co ₅ SiB ₂	140	5.484	5.484	9.942	0.042	-0.337	0.394
Fe5AsB2	140	5.536	5.536	10.652	0.044	-0.244	1.807
Co ₅ BeB ₂	140	5.451	5.451	9.487	0.045	-0.238	0.680
Ni ₅ PB ₂	140	5.412	5.412	10.334	0.045	-0.356	0.000
Ni5AsB2	140	5.514	5.514	10.609	0.054	-0.246	0.001
Ni ₅ GeB ₂	140	5.559	5.559	10.372	0.055	-0.267	0.001
Ni5GaB2	140	5.568	5.568	10.336	0.056	-0.273	0.000
Cr ₅ SiB ₂	140	5.586	5.586	10.359	0.061	-0.384	0.023
Fe5GaB2	140	5.583	5.583	10.507	0.062	-0.219	1.885
Ni5LiB2	140	5.598	5.598	9.565	0.065	-0.179	0.000
Co ₅ B ₃	140	5.169	5.169	10.115	0.070	-0.238	0.549
Co ₅ AsB ₂	140	5.510	5.510	10.283	0.070	-0.212	0.242
Cr5GeB2	140	5.623	5.623	10.571	0.070	-0.259	0.009
Mn5GaB2	140	5.626	5.626	10.502	0.074	-0.253	1.616
Fe ₅ AlB ₂	140	5.570	5.570	10.436	0.076	-0.241	1.830
Co ₅ GaB ₂	140	5.566	5.566	10.095	0.076	-0.201	0.620
Ni ₅ ZnB ₂	140	5.611	5.611	10.138	0.078	-0.209	0.001
Co ₅ PB ₂	140	5.279	5.279	10.477	0.080	-0.357	0.409
Cr5CB2	140	5.364	5.364	9.960	0.083	-0.232	0.003
Ni ₅ SnB ₂	140	5.361	5.361	12.718	0.088	-0.196	0.001
Cr5CoB2	140	5.602	5.602	10.063	0.090	-0.192	0.010
Cr5NiB2	140	5.611	5.611	10.084	0.090	-0.192	0.000
Ni ₅ AlB ₂	140	5.581	5.581	10.177	0.096	-0.311	0.001
Fe ₅ ZnB ₂	140	5.605	5.605	10.364	0.098	-0.142	1.996
Ni_5InB_2	140	5.356	5.356	12.785	0.098	-0.174	0.000
Co ₅ ZnB ₂	140	5.590	5.590	9.972	0.099	-0.110	0.699
Fe ₃ Al ₂ B ₂	10	5.685	2.833	8.593	0.000	-0.426	0.523
Fe ₃ Pt ₂ B ₂	10	6.221	2.829	8.657	0.091	-0.216	2.059
Mn ₃ Al ₂ B ₂	10	5.745	2.877	8.524	0.003	-0.410	0.420
Co ₃ Be ₂ B ₂	10	5.264	2.587	8.327	0.004	-0.349	0.050
Co ₃ Mg ₂ B ₂	10	6.309	2.806	8.722	0.006	-0.232	0.013
$Fe_3Be_2B_2$	10	5.239	2.705	8.066	0.006	-0.327	0.402
Ni ₃ Li ₂ B ₂	10	6.234	2.721	8.582	0.011	-0.201	0.000
Co ₃ Zn ₂ B ₂	10	6.007	2.743	8.472	0.029	-0.224	0.012
Co ₃ Al ₂ B ₂	10	5.812	2.781	8.555	0.031	-0.437	0.106
Ni ₃ Zn ₂ B ₂	10	6.009	2.768	8.591	0.037	-0.221	0.000

Mn ₃ Re ₂ B ₂	10	6.114	2.775	8.533	0.038	-0.279	0.024
$Fe_3Re_2B_2$	10	6.119	2.737	8.574	0.043	-0.214	0.617
Mn ₃ Be ₂ B ₂	10	5.268	2.826	7.835	0.043	-0.346	0.003
Cr ₃ Re ₂ B ₂	10	5.894	2.920	8.735	0.046	-0.268	0.005
Ni ₃ Pt ₂ B ₂	10	6.056	2.903	8.580	0.048	-0.213	0.002
Cr ₃ Tc ₂ B ₂	10	5.848	2.918	8.702	0.053	-0.264	0.017
Ni ₃ Be ₂ B ₂	10	5.386	2.660	8.271	0.057	-0.283	0.000
Fe ₅ B ₂	10	5.558	2.861	8.483	0.059	-0.210	3.349
Ni ₃ Cu ₂ B ₂	10	5.779	2.804	8.395	0.065	-0.140	0.000
Co ₃ Y ₂ B ₂	10	6.735	3.047	9.550	0.067	-0.279	0.020
Cr ₃ Al ₂ B ₂	10	5.916	2.957	8.384	0.067	-0.305	0.007
Mn ₃ Tc ₂ B ₂	10	6.055	2.780	8.508	0.069	-0.268	0.029
Fe ₃ Ir ₂ B ₂	10	6.082	2.827	8.507	0.071	-0.178	1.851
Cr ₃ Os ₂ B ₂	10	5.976	2.883	8.588	0.071	-0.243	0.004
Fe ₃ Tc ₂ B ₂	10	6.078	2.734	8.532	0.071	-0.211	0.616
Cr ₅ B ₂	10	5.553	2.883	8.553	0.076	-0.245	0.006
Cr ₃ Ru ₂ B ₂	10	5.951	2.880	8.532	0.078	-0.236	0.002
Fe ₃ Mo ₂ B ₂	10	6.285	2.700	8.604	0.078	-0.208	0.046
Fe ₃ Zn ₂ B ₂	10	6.030	2.803	8.425	0.079	-0.167	1.130
Ni ₃ Mg ₂ B ₂	10	6.276	2.870	8.855	0.079	-0.254	0.001
Ni3Pd2B2	10	6.002	2.902	8.572	0.083	-0.193	0.000
Fe ₃ W ₂ B ₂	10	6.276	2.703	8.640	0.083	-0.197	0.066
Fe ₃ Rh ₂ B ₂	10	6.023	2.848	8.521	0.084	-0.184	2.233
Fe ₃ Co ₂ B ₂	10	5.589	2.824	8.345	0.084	-0.186	2.794
Cr ₃ Mn ₂ B ₂	10	5,594	2.848	8.356	0.085	-0.249	0.011
Ni ₃ Al ₂ B ₂	10	5.848	2.817	8.626	0.085	-0.370	0.001
Cr ₃ Ir ₂ B ₂	10	6.216	2.816	8.544	0.088	-0.303	0.046
Mn ₃ Ir ₂ B ₂	10	6.090	2.843	8.545	0.089	-0.263	1.391
Co ₃ Pt ₂ B ₂	10	6.134	2.815	8.587	0.091	-0.176	0.663
Mn ₃ Co ₂ B ₂	10	5.534	2.935	8.434	0.091	-0.227	3.310
Co ₃ Tc ₂ B ₂	10	6.087	2.690	8.602	0.092	-0.172	0.281
Mn ₃ Os ₂ B ₂	10	6.077	2.758	8.549	0.095	-0.221	0.211
Cr ₃ W ₂ B ₂	10	5.891	2.969	8.866	0.096	-0.218	0.009
Cr ₃ Mo ₂ B ₂	10	5.861	2.968	8.869	0.096	-0.219	0.007
Mn ₃ Si ₂ B ₂	10	5.398	2.818	8.550	0.096	-0.366	0.016
Co ₃ Rh ₂ B ₂	10	5.987	2.786	8.542	0.097	-0.139	1.060
Co ₃ Fe ₂ B ₂	10	5.629	2.705	8.674	0.098	-0.160	2.565
Mn ₃ Rh ₂ B ₂	10	6.029	2.914	8.477	0.098	-0.242	2.156
Co ₃ Re ₂ B ₂	10	6.106	2.724	8.587	0.098	-0.159	0.032
Co ₅ B ₂	10	5.633	2.629	8.641	0.099	-0.136	1.905
Co ₄ Be ₃ B ₂	123	7.586	7.586	2.586	0.000	-0.395	0.001
Fe ₄ Al ₃ B ₂	123	8.083	8.083	2.791	0.000	-0.411	0.001
Ni ₄ Li ₃ B ₂	123	8.049	8.049	2.734	0.000	-0.203	0.000
Fe ₄ Be ₃ B ₂	123	7.487	7.487	2.697	0.028	-0.287	0.530
Fe ₇ B ₂	123	7.917	7.917	2.875	0.037	-0.171	3.606
Co ₄ Zn ₃ B ₂	123	8.273	8.273	2.679	0.042	-0.162	0.003
Ni ₄ Be ₃ B ₂	123	7.643	7.643	2.649	0.049	-0.320	0.001

$Mn_4V_3B_2$	123	8.067	8.067	2.850	0.063	-0.384	0.198
Co ₄ Al ₃ B ₂	123	8.181	8.181	2.736	0.063	-0.437	0.420
Mn ₄ Cr ₃ B ₂	123	7.948	7.948	2.786	0.072	-0.197	0.250
Ni ₄ Zn ₃ B ₂	123	8.398	8.398	2.687	0.074	-0.187	0.000
$Co_4Fe_3B_2$	123	8.118	8.118	2.640	0.075	-0.145	2.677
Co ₄ Mg ₃ B ₂	123	8.486	8.486	2.791	0.075	-0.112	0.001
Mn ₄ Al ₃ B ₂	123	8.250	8.250	2.823	0.075	-0.306	1.181
Co ₇ B ₂	123	8.146	8.146	2.571	0.075	-0.107	2.106
Ni ₄ Cu ₃ B ₂	123	8.282	8.282	2.614	0.085	-0.111	0.000
Cr ₇ B ₂	123	7.963	7.963	2.890	0.086	-0.163	0.020
Ni ₄ Pt ₃ B ₂	123	8.479	8.479	2.838	0.087	-0.138	0.002
Fe ₄ Co ₃ B ₂	123	7.855	7.855	2.851	0.088	-0.136	3.111
Mn7B2	123	7.937	7.937	2.764	0.089	-0.180	1.288
Ni ₇ B ₂	123	7.482	7.482	3.099	0.091	-0.146	0.007

Here, we found that there are two kind of AFM structures (interlayer and intralayer) existing in 212-type MAB phase, as shown in the following Figure.

Figure S0: Antiferromagnetic structure of 212-type MAB (a) intralyer: the antiferromagnetic direction exists in two layers; (b) interlayer: the antiferromagnetic direction exists in single layer. The red arrow presents magnetic direction.

Table S2: The magnetic ground	state of stable 212-MAB	phases, the stable state of	compound is hi	ighlighted by	v blue color
0 0					

Compounds	AFM-1(interlayer)	AFM-2 (intralayer)	FM	NM
Co ₂ AlB ₂	-65.88683765	-65.88739406	-65.89295922	-65.88713772
Fe_2BeB_2	-70.64633821	-70.819765	-70.70739773	-70.62268063
Mn ₂ BeB ₂	-74.58037508	-74.580124	-74.58040138	-74.58040414
Fe ₂ AlB ₂	-71.13230669	-71.09418939	-71.22404215	-70.89307686
Mn ₂ AlB ₂	-74.8532619	-74.98085613	-74.88387864	-74.84775026
Cr ₂ AlB ₂	-76.85518352	-76.86093353	-76.85519078	-76.86519042
Cr ₂ SiB ₂	-79.71707885	-79.7170405	-79.71708159	-79.71708801
Cr ₂ BeB ₂	-76.13809946	-76.13763057	-76.13897144	-76.13825155
Cr ₂ ReB ₂	-93.44839084	-93.44947192	-93.4483936	-93.4484053
Fe_2MgB_2	-65.35932093	-65.487255	-65.40892677	-65.22253462
Co ₂ BeB ₂	-65.46095924	-65.46052103	-65.46096941	-65.46096508
Cr_2TcB_2	-89.32741701	-89.32863	-89.32741413	-89.32742021
Mn_2IrB_2	-84.04569417	-83.71480308	-83.93695103	-83.29687721

Fe ₂ ZnB ₂	-64.29285113	-64.3351	-64.4243543	-64.06986852
Cr ₂ IrB ₂	-86.19893738	-86.19928	-86.19893654	-86.19894242
Ni ₂ LiB ₂	-54.27823214	-54.277735	-54.27824987	-54.27825027
Ni ₂ PtB ₂	-62.98827476	-62.98661738	-62.98827225	-62.98825967
Cr ₂ FeB ₂	-84.74945681	-84.74946883	-84.77690838	-84.2112152
Fe ₂ IrB ₂	-79.92897498	-79.74748988	-79.79422707	-79.42577378
Ni ₂ CuB ₂	-57.44034817	-57.43990365	-57.44036768	-57.44036423
Ni_2ZnB_2	-52.56202703	-52.56513507	-52.56201213	-52.56202985
Cr ₃ B ₂	-87.43351322	-87.43396514	-87.43798357	-87.43751847
Fe ₂ PtB ₂	-74.70423426	-74.62013806	-74.59938047	-74.22282814
Cr ₂ WB ₂	-94.30228641	-94.29669283	-94.30228909	-94.30228437
Co ₂ MgB ₂	-60.52900881	-60.52999946	-60.52899462	-60.52898785
Cr ₂ MoB ₂	-90.20335062	-90.19891642	-90.20335146	-90.20335561
Mn ₂ CoB ₂	-79.69489999	-79.35527983	-80.1317531	-78.96686236
Mn ₂ FeB ₂	-81.85999957	-81.93613345	-82.61290818	-81.17754211
Mn_2RhB_2	-80.76741383	-80.42217598	-80.70689175	-80.09631274
Fe ₃ B ₂	-78.20603462	-77.97281357	-78.85399875	-77.44795282
Cr ₂ RuB ₂	-86.69911492	-86.70007	-86.69911455	-86.69911566
Cr ₂ OsB ₂	-90.66864023	-90.668995	-90.66864015	-90.66865212
Mn_2PtB_2	-78.79303215	-78.45515068	-78.58993224	-77.82327552
Fe ₂ GaB ₂	-67.88642365	-67.75845476	-67.92364477	-67.62770421
Ni ₂ BeB ₂	-58.26200763	-58.26036285	-58.26200875	-58.2619976
Ni ₂ PdB ₂	-61.07432402	-61.0729872	-61.07429402	-61.0742564
Mn_2SiB_2	-77.09190803	-77.26047303	-77.09190222	-77.09192171
Mn ₂ ReB ₂	-90.6081387	-90.7066324	-90.74289642	-90.60827896
Cr ₂ RhB ₂	-82.79945631	-82.799195	-82.79944198	-82.79945691
Cr ₂ VB ₂	-87.46225672	-87.46198938	-87.46225834	-87.46226062
Ni ₂ AuB ₂	-56.23165208	-56.22294795	-56.2316556	-56.23166659
Cr ₂ CoB ₂	-82.01197093	-82.01197657	-82.16236059	-81.79494385
Cr ₂ NiB ₂	-79.102105	-79.10211	-79.10212617	-79.10191962
Co ₂ PtB ₂	-69.63778263	-69.65924301	-69.63859647	-69.63785776
Cr ₂ MnB ₂	-86.38774777	-86.389125	-86.28089684	-86.28099021
Fe_2ReB_2	-86.89963676	-86.69655193	-86.90407834	-86.44485698
Fe ₂ NiB ₂	-73.2030513	-73.05261169	-73.10598643	-72.71702075
Mn ₂ ScB ₂	-79.49799809	-79.47839842	-79.51282108	-79.48712127
Cr ₂ PtB ₂	-80.49575377	-80.496715	-80.49590885	-80.49575249
Fe ₂ RhB ₂	-76.83798018	-76.64636958	-76.77048282	-76.27060534
Mn ₂ RuB ₂	-84.07773177	-84.02944525	-84.24640701	-83.72690734
Mn ₂ NiB ₂	-77.03817855	-76.59623733	-76.85380813	-76.52395167
Mn ₂ WB ₂	-92.01502458	-92.015225	-92.01504492	-92.01504981
Mn ₂ TcB ₂	-86.50318745	-86.60635618	-86.64415689	-86.50455953

Here, we list three representative Mn-based M_2AB_2 phases: Mn_2AIB_2 (reported), Mn_2PtB_2 (calculated large MAE) and Mn_2BeB_2 (stable on the convex hull) as an example. Table S3 summarizes the lattice parameters, total energies and magnetization of Mn_2AIB_2 , Mn_2PtB_2 and Mn_2BeB_2 with different magnetic configurations. The calculated lattice parameters and on-site atomic

magnetic moment of Mn agree well with experiments. The relaxed lattice parameters of M_2AB_2 not only vary with element A but also depend on the spin configuration. For Mn₂AlB₂, b and c increase when the spin configuration changes from NM \rightarrow FM \rightarrow AFM, which is agree with Ke's calculated results⁹. And the E_{tot} of Mn₂AlB₂ with AFM is lowest, which indicates the magnetic ground state of it is AFM. This result matched with above mentioned studies. For Mn₂PtB₂, the magnetic ground state is confirmed as AFM. For Mn₂BeB₂, the magnetic ground state is NM which can be proved by total energy and magnetization results (0.008 µB per Mn in FM).

Table S3: Lattice parameters (Å), total energy E_{tot} (eV/at.) and on-site atomic magnetic moment of Mn, M_{Mn} (μB) in Mn_2AB_2 with A = Al, Pt and Be.

Compounds	Magnetism	а	b	c	Etot	M _{Mn}
Mn ₂ AlB ₂	AFM	2.893	11.113	2.835	-7.498	0.765
	FM	2.894	11.080	2.831	-7.488	0.410
	NM	2.895	11.066	2.822	-7.484	0
CAL ⁹	AFM	2.887	11.109	2.830		0.750
	FM	2.892	11.056	2.826		0.420
	NM	2.890	11.050	2.817		0
EXP ¹⁰	AFM	2.923	11.072	2.898		0.712
EXP ¹¹	AFM	2.930	11.019	2.898		0.690
EXP ¹²	FM	2.936	11.120	2.912		0.410
Mn_2PtB_2	AFM	3.008	11.106	3.066	-7.879	2.664
	FM	2.982	11.160	3.025	-7.848	2.310
	NM	2.877	11.506	2.915	-7.778	0
Mn ₂ BeB ₂	AFM	2.843	9.972	2.818	-7.457	0.002
	FM	2.846	9.969	2.815	-7.457	0.008
	NM	2.844	9.965	2.813	-7.458	0

Atomic percent Fe

Figure S1: Calculated phase diagram of the Fe-Al-B system based on formation energies calculated with VASP. The color scale gives the formation energies in eV per atom. Black lines connect the convex hull. Square means stable compounds and circle means unstable compounds. Dark shadow indicates the high potential stable area.

It is well known that the melting temperature of boron (2573K) is much higher than those of the most other constituent elements considered, thus it is challenging to obtain binary and ternary borides via direct chemical reactions between pure elements. Taking the Fe-Al-B system as an example, the phase diagram is shown in Fig. S1, where the relative stability of all the known and predicted phases is visualized based on the calculated ΔE_f and ΔE_h . Interestingly, it results in a composition range within 50 at. % < Al at. % < 100 at. %, 10 at. % < B at. % < 60 at. %, and 30 at. % < Fe at. % < 70 at.% collecting the stable phases, as highlighted by the shaded region in Fig. S1. We suspect that there might exist more stable structures in the composition range, entailing further exploration. Moreover, it can be seen in Fig.S1, there are some stable compounds that are experimentally synthesized and present predicted appearing in the dark shadow area. We can suspect that more unreported stable compounds might be in the area, and people who are interested can explore them in the future. Furthermore, based on the phase diagram, we would propose two possible chemical reactions to synthesize the predicted Fe₄AlB₄ as follows:

$$Fe_2AIB_2 + 2FeB \rightarrow Fe_4AIB_4$$

$AI + 4FeB \rightarrow Fe_4AIB_4$

It is worthy pointing out that such suggestions are based on our calculations at 0 K, where more dedicated assessment of ternary phase diagrams based on the CALPHAD method will give us more insights, saved for future investigations.

Figure S2: Phonon bands of unreported MAB and Non-MAB phases.

Figure S3: Density of states of predicted non-magnetic MAB phases.

Figure S4: Elements are color-coded as a function of the number of stable compounds with the respective element on the **A** sites. (Above) Histogram representation of number of stable compounds of different systems calculated in this work, purple bar means MAB phases and yellow bar means Non-MAB phases.

Figure S5: The stability map of 212-MAB phases according to the feature factors electronegativity and electron concentration (circle symbols represent unstable phases in the present work; triangle symbols represent possible stable phases with convex hull distance below 100 meV/atom in the present).

Elements(M)	Valence Electrons	Elements(A)	Itinerant Electrons	Elements(B)	Valence Electrons
Cr	6	Li	1.02	В	3
Со	9	Na	1.01		
Ni	10	K	1.01		
Fe	8	Rb	1.01		
Mn	7	Cs	1.04		
В	3	Be	2		
Sc	3	Mg	2.01		
Ti	4	Ca	1.56		
Zr	4	Sr	1.96		
Hf	4	Ba	2.03		
V	5	Sc	1.33		
Мо	6	Y	1.87		
W	6	Ti	1.14		
Tc	7	Zr	1.49		
Ru	8	Hf	1.76		
Rh	9	V	0.9		
		Nb	1.32		
		Та	1.57		

Table S4: The valence/itinerant electron values adopted in this work.

Ci		0.92
M	0	1.39
W	r	1.43
Mi	n	1.05
To	;	0.95
Re	2	1.4
Fe	;	1.05
Rı	1	1.04
Os	3	1.55
Co)	1.03
	1	1
Ir		1.6
Ni	i	1.16
Pc	l	0.96
Pt		1.63
Cu	1	1
A	3	1.01
Au	1	1
Zr	1	2.04
Co	1	2.03
 H	g	2.03
В		2.98
A	l	3.01
Ga	1	3
In	l	3.03
TI		3.03
С		3.92
Si		4
Ge	e	4.05
Sr	1	3.97
Pt)	4
N		4.9
P		4.97
As	3	4.92
St)	4.99
Bi	i	4.94

Elements(M)	Atomic Radius	Elements(A)	Atomic Radius	Elements(B)	Atomic Radius
Cr	1.3	Li	1.3	В	0.84
Со	1.18	Na	1.6		
Ni	1.17	K	2		
Fe	1.24	Rb	2.15		
Mn	1.29	Cs	2.38		
Sc	1.59	Be	0.99		
Ti	1.48	Mg	1.4		
Zr	1.64	Ca	1.74		
Hf	1.64	Sr	1.9		
V	1.44	Ba	2.06		
Мо	1.46	Sc	2.15		
W	1.5	Y	1.76		
Tc	1.38	Ti	2.11		
Ru	1.36	Zr	1.64		
Rh	1.34	Hf	1.64		
		V	1.44		
		Nb	1.56		
		Та	1.58		
		Cr	1.3		
		Мо	1.46		
		W	1.5		
		Mn	1.29		
		Tc	1.38		
		Re	1.41		
		Fe	1.24		
		Ru	1.36		
		Os	1.36		
		Со	1.18		
		Rh	1.34		
		Ir	1.32		
		Ni	1.17		
		Pd	1.3		
		Pt	1.3		
		Cu	1.22		
		Ag	1.36		
		Au	1.3		
		Zn	1.2		

Table S5: The atomic radius values adopted in this work.

Cd	1.4	
Hg	1.32	
В	0.84	
Al	1.24	
Ga	1.23	
In	1.42	
TI	1.44	
С	0.75	
Si	1.14	
Ge	1.2	
Sn	1.4	
Pb	1.45	
N	0.71	
Р	1.09	
As	1.2	
Sb	1.4	
Bi	1.5	

Figure S6: The stability map of 414-MAB phases (circle symbols represent unstable phases in the present work; triangle symbols represent possible stable phases with convex hull distance below 100 meV/atom in the present).

Figure S7: COHP of M₄ScB₄ (where M are Cr, Mn, Fe, Co and Ni).

Figure S8: COHP of (upper) M₂AlB₂ (where M are Cr, Mn, Fe, Co and Ni) and (bottom) Fe₂AB₂ (where A are Be, Mg, Ca, Sr and Ba).

Compounds	Space	М	AE (MJ/m ³)		Magnetic moment	Magnetic density	Crystal Structure
Compounds	Group	K001-100	K001-010	k010-100	(µB/f.u)	(emu/cm ³)	Crystal Structure
CoCrB	63	-1.884	-1.884	0.000	5.514	462.330	
Fe ₂ B	63	2.230	1.865	0.365	16.310	1352.627	
FeIrB	63	-2.627	-1.258	-1.369	5.805	436.918	•••
FeNiB	63	0.834	-0.654	1.488	7.909	672.329	
FePtB	63	-3.421	7.225	-10.646	7.550	542.026	•
FeRhB	63	2.528	0.309	2.220	7.409	561.255	٥. ٩
FeZnB	63	0.300	-1.997	2.297	4.602	351.641	°
CoMnB	63	1.292	1.743	-0.451	14.160	1174.969	
MnIrB	63	4.135	8.049	-3.914	7.967	584.998	
MnNiB	63	1.245	1.767	-0.521	9.792	811.435	
MnPdB	63	0.790	1.592	-0.802	9.739	688.735	, 🔶 🖌 🖉 🧕
MnPtB	63	9.126	11.969	-2.843	9.763	683.691	
MnRhB	63	2.863	4.016	-1.153	8.943	661.411	
Co ₂ PtB ₂	65	-2.412	-3.102	0.690	1.228	119.739	
Fe ₂ AlB ₂	65	-1.110	0.031	-1.141	5.319	538.463	
Fe ₂ BeB ₂	65	-1.917	-0.047	-1.869	3.043	355.462	
Fe ₃ B ₂	65	0.245	1.666	-1.421	11.596	1209.796	
Fe ₂ GaB ₂	65	-1.122	0.096	-1.218	5.439	541.505	
Fe ₂ IrB ₂	65	5.056	7.245	-2.190	6.736	661.715	
Fe ₂ MgB ₂	65	-2.438	0.470	-2.908	3.640	340.502	00.00
Fe ₂ NiB ₂	65	-2.443	0.010	-2.453	6.147	652.780	
Fe ₂ PtB ₂	65	-3.924	1.211	-5.135	6.392	611.442	0000
Fe ₂ ReB ₂	65	-4.958	-8.999	4.042	5.541	548.443	
Fe2RhB2	65	0.619	1.838	-1.219	7.597	748.423	
Fe ₂ ZnB ₂	65	-1.919	0.636	-2.555	4.183	419.456	0000
Mn ₂ CoB ₂	65	1.981	1.756	0.225	10.868	1124.732	
Mn ₂ FeB ₂	65	1.446	1.565	-0.119	11.320	1165.646	
Mn ₂ IrB ₂	65	1.803	-2.559	4.362	8.270	789.006	
Mn ₂ NiB ₂	65	1.407	0.101	1.305	8.382	869.483	
Mn ₂ PtB ₂	65	20.271	20.271	0.000	9.414	869.433	
Mn ₂ ReB ₂	65	-8.247	-2.133	-6.114	6.589	635.442	
Mn_2RhB_2	65	1.609	1.609	0.000	8.678	833.085	
Mn ₂ TcB ₂	65	-1.424	-0.811	-0.613	6.417	622.289	
Fe ₃ BeB ₄	47	-1.672	0	1.672	3.594	532.907	0
Fe ₃ IrB ₄	47	1.021	-5.786	-6.807	4.307	575.519	00
Fe ₃ MgB ₄	47	-1.054	-0.099	0.954	3.778	481.034	00 00
Fe ₃ PtB ₄	47	-1.921	7.214	9.134	4.350	570.827	•
Fe ₃ ZnB ₄	47	-1.324	-0.056	1.269	4.093	550.002	00,00
Mn ₃ IrB ₄	47	0.965	-3.888	-4.853	6.657	860.514	
Mn ₃ PtB ₄	47	-3.324	-8.892	-5.568	6.773	857.270	
Mn ₄ AlB ₆	65	-1.123	-1.123	0.000	8.566	436.975	
Mn ₄ GaB ₆	65	-1.004	0.010	-1.014	9.221	465.665	
Mn ₄ IrB ₆	65	3.816	3.768	0.047	15.786	779.608	
Mn ₄ PtB ₆	65	6.258	4.738	1.519	16.260	790.929	
Mn ₄ ZnB ₆	65	-0.892	0.149	-1.041	8.680	437.764	

Table S6: The novel MAB and Non-MAB phases with $|K_{i\cdot j}| > 1 \mbox{ MJ/m^3}.$

$Co_3Pt_2B_2$	65	-2.429	-1.745	-0.685	2.864	180.640	

Co ₃ Pt ₂ B ₂	65	-2.429	-1.745	-0.685	2.864	180.640	
Fe ₃ Al ₂ B ₂	65	-1.420	0.066	-1.487	4.410	295.705	0.00
Fe ₃ Be ₂ B ₂	65	-2.012	-2.012	0.000	5.274	421.961	0
Fe ₃ Co ₂ B ₂	65	-0.159	1.158	-1.317	18.609	1291.798	0 0,00
Fe_5B_2	65	0.774	1.528	-0.754	21.114	1448.993	°0 ⁰ °
Fe ₃ Ir ₂ B ₂	65	8.212	6.782	1.430	12.651	792.503	
Fe ₃ Rh ₂ B ₂	65	0.131	1.027	-0.896	13.009	845.070	0 0
$Fe_3Zn_2B_2$	65	-3.001	-1.361	-1.640	8.907	571.752	0000
Mn ₃ Al ₂ B ₂	65	-0.197	0.950	-1.148	5.771	372.455	• • • • • • •
Mn ₃ Co ₂ B ₂	65	1.788	1.666	0.122	19.929	1348.995	
$Mn_3Ir_2B_2$	65	-10.171	-7.582	-2.589	16.385	992.463	
Mn ₃ Pt ₂ B ₂	65	6.415	4.767	1.648	16.765	972.699	
Mn ₄ PtB ₄	71	11.948	-1.550	13.498	16.588	919.450	
Fe ₄ OsB ₄	71	4.573	-3.677	8.251	11.281	664.139	
Fe4IrB4	71	7.789	4.471	3.318	12.238	714.201	
Fe ₄ ReB ₄	71	-7.417	-1.875	-5.543	11.486	672.519	
Fe ₄ TaB ₄	71	1.785	6.706	-4.921	9.930	560.842	
Co ₄ IrB ₄	71	-6.061	-3.840	-2.221	0.129	7.657	
Mn ₄ IrB ₄	71	-5.757	-3.647	-2.109	16.027	905.022	
Mn ₄ ReB ₄	71	0.411	4.484	-4.073	13.815	785.087	
Mn ₄ OsB ₄	71	-3.608	-0.049	-3.560	14.938	850.492	
Fe ₄ AuB ₄	71	0.570	3.051	-2.481	11.687	654.290	
Fe ₄ WB ₄	71	2.543	2.647	-0.103	11.096	641.107	
Fe ₄ AgB ₄	71	0.927	2.465	-1.538	11.353	633.953	0,00
Fe ₄ PdB ₄	71	0.098	2.453	-2.355	12.053	695.196	° • • •
Fe ₄ TcB ₄	71	-0.746	1.474	-2.220	11.881	695.087	0 0,00
Fe ₄ ZnB ₄	71	0.311	2.213	-1.902	10.608	624.239	°00°
Fe ₄ CuB ₄	71	0.375	2.059	-1.684	11.498	690.269	00
Fe ₄ NbB ₄	71	0.528	2.038	-1.511	10.379	581.800	000
Fe ₄ CdB ₄	71	1.125	2.030	-0.905	11.340	619.058	OV OV
Fe ₄ RuB ₄	71	1.976	1.591	0.385	12.221	717.097	
Fe ₄ B ₅	71	-0.741	1.231	-1.973	8.371	556.735	
Fe ₄ MgB ₄	71	1.086	1.942	-0.856	11.129	623.970	
Fe ₄ MoB ₄	71	0.857	1.809	-0.952	11.036	637.712	
Co ₄ FeB ₄	71	1.379	-0.420	1.799	6.020	370.788	
Fe ₄ NiB ₄	71	0.243	1.776	-1.533	11.622	711.144	
Fe ₄ LiB ₄	71	0.710	1.774	-1.064	11.077	645.627	
Mn ₄ CoB ₄	71	1.568	-0.188	1.756	17.969	1062.915	
Mn ₄ AuB ₄	71	1.749	0.153	1.596	14.244	775.212	
Fe ₄ VB ₄	71	-0.111	1.511	-1.622	12.732	750.986	
Fe ₄ CrB ₄	71	0.151	1.591	-1.439	14.488	871.794	
Fe ₄ RhB ₄	71	1.582	1.526	0.056	12.909	752.215	
Co ₄ MnB ₄	71	1.562	0.209	1.353	7.677	460.624	

Fe ₄ InB ₄	71	0.156	1.560	-1.404	10.395	569.677	
Fe_5B_4	71	1.017	1.497	-0.480	17.079	1032.848	
Mn ₄ FeB ₄	71	1.491	0.226	1.265	17.898	1059.765	
Mn ₄ PdB ₄	71	1.202	-0.237	1.439	16.137	897.1075	
Fe ₄ BeB ₄	71	-0.182	1.253	-1.435	8.133	523.344	000
Fe ₄ MnB ₄	71	0.982	1.326	-0.344	17.299	1036.999	0,00
Fe ₄ GaB ₄	71	0.170	1.235	-1.065	10.306	607.816	00
Fe4CoB4	71	0.792	1.209	-0.416	15.379	934.922	
Fe ₄ GeB ₄	71	0.029	1.182	-1.153	10.975	640.336	00.00
Fe ₄ AlB ₄	71	0.063	1.153	-1.090	10.166	604.617	•
Mn ₄ VB ₄	71	0.513	-0.616	1.130	9.149	535.797	
Mn ₅ B ₄	71	1.090	0.352	0.738	17.017	999.941	
Mn ₄ RhB ₄	71	0.335	-0.685	1.019	16.572	935.596	
Fe ₄ YB ₄	71	0.575	1.014	-0.438	9.945	513.817	

$\mathrm{Co}_5\mathrm{BeB}_2$	140	1.810	1.810	0	13.608	447.646
Co_5ZnB_2	140	1.689	1.689	0	13.972	415.771
Fe ₅ ZnB ₂	140	1.889	1.889	0	39.919	1136.984

•			
0	•	00	
5			
5		•	
•			D

	1080.426	15.387	-1.072	0.000	1.072	10	Co ₃ Fe ₂ B ₂
8 8	249.501	3.979	-2.570	1.922	4.492	10	$Co_3Pt_2B_2$
	706.387	11.105	4.346	7.741	3.395	10	$Fe_3Ir_2B_2$
•	755.315	12.353	-2.386	2.545	4.931	10	$Fe_3Pt_2B_2$
	852.345	13.396	1.157	1.043	-0.115	10	Fe ₃ Rh ₂ B ₂
	443.081	6.781	1.135	-0.368	-1.503	10	Fe ₃ Zn ₂ B ₂
	1342.777	19.858	-0.582	0.628	1.210	10	Mn ₃ Co ₂ B ₂
	525.648	8.346	-5.313	0.000	5.313	10	Mn ₃ Ir ₂ B ₂
	807.529	12.938	-0.533	-1.380	-0.846	10	Mn ₃ Rh ₂ B ₂

							A 8 9
Co ₄ Fe ₃ B ₂	123	1.156	1.156	0.000	21.417	1141.436	j V 🧬 👸 🕇

Table S7: The novel MAB and Non-MAB phases with uniaxial MAE.

Company	Space		MAE (MJ/m ³)			
Compounds	Group		K001-100	K001-010	k010-100	
CoCrB	63	Out-of-plane	-1.884	-1.884	0.000	
FeIrB	63	Out-of-plane	-2.627	-1.258	-1.369	
MnPtB	63	In-plane	9.126	11.969	-2.843	
MnRhB	63	In-plane	2.863	4.016	-1.153	
Fe ₂ B	63	In-plane	2.230	1.865	0.365	
CoMnB	63	In-plane	1.292	1.743	-0.451	

MnNiB	63	In-plane	1.245	1.767	-0.521
Co ₂ PtB ₂	65	Out-of-plane	-2.412	-3.102	0.690
Fe ₂ ReB ₂	65	Out-of-plane	-4.958	-8.999	4.042
Mn ₂ CoB ₂	65	In-plane	1.981	1.756	0.225
Mn_2RhB_2	65	In-plane	1.609	1.609	0.000
Mn ₂ FeB ₂	65	In-plane	1.446	1.565	-0.119
Cr ₂ CoB ₂	65	In-plane	0.697	0.697	0.000
Cr ₂ FeB ₂	65	In-plane	0.446	0.446	0.000
Ni ₃ Pt ₂ B ₂	65	Out-of-plane	-0.467	-0.467	0.000
$Fe_3Be_2B_2$	65	Out-of-plane	-2.012	-2.012	0.000
Co ₃ Pt ₂ B ₂	65	Out-of-plane	-2.429	-1.745	-0.685
Fe ₃ Zn ₂ B ₂	65	Out-of-plane	-3.001	-1.361	-1.640
Mn ₃ Ir ₂ B ₂	65	Out-of-plane	-10.171	-7.582	-2.589
Fe ₃ Ir ₂ B ₂	65	In-plane	8.212	6.782	1.430
Mn ₃ Pt ₂ B ₂	65	In-plane	6.415	4.767	1.648
Mn ₃ Co ₂ B ₂	65	In-plane	1.788	1.666	0.122
Fe ₃ MgB ₄	47	Out-of-plane	-1.054	-0.099	0.954
Fe ₄ PtB ₄	71	Out-of-plane	-0.442	-0.557	0.115
Ni ₄ CoB ₄	71	Out-of-plane	-0.502	-0.801	0.299
Fe ₄ ReB ₄	71	Out-of-plane	-7.417	-5.543	-1.875
Mn ₄ PtB ₄	71	In-plane	11.948	13.498	-1.550
Mn ₄ AuB ₄	71	In-plane	1.749	1.596	0.153
Mn ₄ CoB ₄	71	In-plane	1.568	1.756	-0.188
Co ₄ MnB ₄	71	In-plane	1.562	1.353	0.209
Mn ₄ FeB ₄	71	In-plane	1.491	1.265	0.226
Co ₄ FeB ₄	71	In-plane	1.379	1.799	-0.420
Mn ₄ PdB ₄	71	In-plane	1.202	1.439	-0.237
Mn ₄ PB ₄	71	In-plane	0.975	0.924	0.051
Co4CrB4	71	In-plane	0.890	1.015	-0.125
Mn4GeB4	71	In-plane	0.788	0.742	0.046
Mn4NiB4	71	In-plane	0.769	0.928	-0.159
Mn ₄ TiB ₄	71	In-plane	0.731	0.590	0.141
Mn ₄ SiB ₄	71	In-plane	0.679	0.694	-0.015
Mn ₄ AlB ₄	71	In-plane	0.556	0.500	0.055
Mn (NbB)	71	In plane	0.482	0.491	0.009
Mn GaB	71	In plane	0.461	0.491	-0.009
Mn4GaB4	71	In plana	0.401	0.510	-0.148
Mn411gB4	71	In plana	0.429	0.510	-0.081
Mn MaP	65	Out of plana	0.415	0.250	0.138
Mm AlD	65	Out-of-plane	-0.708	-0.708	0.000
Ea DaD	65	Out-of-plane	-1.125	-1.125	0.000
re4BeB6	00	Jui-oi-piane	-0.745	-0.745	0.000
Mr. D/D	65	In-plane	3.810	3./08	0.047
Mn ₄ PtB ₆	65	In-plane	6.258	4./38	1.519
Fe ₅ PB ₂	140	Out-of-plane	-0.634	-0.634	0.000
Co ₅ AsB ₂	140	In-plane	0.486	0.486	0.000
Fe ₅ AlB ₂	140	In-plane	0.475	0.475	0.000
Mn ₅ BeB ₂	140	In-plane	0.559	0.559	0.000
Co ₅ PB ₂	140	In-plane	0.665	0.665	0.000

Co ₅ GaB ₂	140	In-plane	0.642	0.642	0.000
Co ₅ B ₃	140	In-plane	0.762	0.762	0.000
Co ₅ GeB ₂	140	In-plane	0.755	0.755	0.000
Mn5GaB2	140	In-plane	0.783	0.783	0.000
Fe ₅ BeB ₂	140	In-plane	0.898	0.898	0.000
Co ₅ BeB ₂	140	In-plane	1.810	1.810	0.000
Co ₅ ZnB ₂	140	In-plane	1.689	1.689	0.000
Fe ₅ ZnB ₂	140	In-plane	1.889	1.889	0.000
Fe ₃ Tc ₂ B ₂	10	Out-of-plane	-0.581	0.162	0.742
Co ₅ B ₂	10	Out-of-plane	-0.595	-0.684	-0.089
Mn ₃ Rh ₂ B ₂	10	Out-of-plane	-0.846	-1.380	-0.533
$Fe_3Al_2B_2$	10	Out-of-plane	-0.971	0.025	0.996
Fe ₃ Zn ₂ B ₂	10	Out-of-plane	-1.503	-0.368	1.135
$Fe_3Pt_2B_2$	10	In-plane	4.931	2.545	-2.386
$Co_3Pt_2B_2$	10	In-plane	4.492	1.922	-2.570
Fe ₃ Ir ₂ B ₂	10	In-plane	3.395	7.741	4.346
Mn ₃ Co ₂ B ₂	10	In-plane	1.210	0.628	-0.582
Fe ₅ B ₂	10	In-plane	0.408	0.482	0.074
Fe ₇ B ₂	123	Out-of-plane	-0.681	-0.681	0.000
$Co_4Fe_3B_2$	123	In-plane	1.156	1.156	0.000

Table S8: The MAE and E_{SOC} for the FeXB (where X are Ni, Pd, and Pt).

		FeNiB	FePdB	FePtB
	[100]-[001]	-0.028	0.002	0.579
MAE (meV/f.u.)	[100]-[010]	-0.128	0.181	2.106
	[001]-[010]	-0.100	0.179	1.526
	[100]	-10.660	-10.443	-6.934
Esoc (Fe) (meV/atom)	[001]	-10.391	-10.230	-6.787
	[010]	-10.167	-10.026	-7.424
	[100]-[001]	-0.269	-0.213	-0.147
ΔE_{soc} (Fe) (meV/atom)	[100]-[010]	-0.492	-0.417	0.490
	[001]-[010]	-0.223	-0.204	0.637
	[100]	-18.892	-338.919	-4223.153
E _{SOC} (X) (meV/atom)	[001]	-18.918	-339.122	-4224.317
	[010]	-18.799	-339.621	-4225.756
	[100]-[001]	0.026	0.203	1.164
$\Delta \mathbf{E}_{SOC}(\mathbf{X})$ (meV/atom)	[100]-[010]	-0.093	0.702	2.603
	[001]-[010]	-0.119	0.499	1.439
	[100]	-29.569	-349.380	-4230.111
E _{SOC} (FeXB) (meV/f.u.)	[001]	-29.326	-349.369	-4231.125
	[010]	-28.983	-349.665	-4233.204
	[100]-[001]	-0.243	-0.011	1.014
ΔEsoc (FeXB) (meV/f.u.)	[100]-[010]	-0.586	0.284	3.092
	[001]-[010]	-0.343	0.296	2.078

Figure S9: The calculated Σ_M for all 434 compounds with convex hull tolerance of ΔE_h meV/atom. Different structures were presented with different color in the square above the figure. Magnetic elements were shown in different symbols. The black bold dash line indicates $\Sigma_M = 1.5$ %; candidates above this line are predicted to show large ΔS_M values.

Compounds Space group $\Sigma_M(\%)$			Magnetic density (emu/cm ³) Convexhull (meV/atom) Formation energy (eV/atom)			
CrFeB	63	2.494	739.926	40.600	-0.310	
Fe ₂ B	63	5.811	1352.627	68.300	-0.244	
FeNiB	63	2.946	672.329	96.500	-0.209	
FePtB	63	3.548	542.026	62.500	-0.242	
FeZnB	63	1.984	351.641	44.600	-0.206	
MnAlB	63	1.514	301.458	66.300	-0.329	
CoMnB	63	1.815	1174.969	83.700	-0.255	
FeMnB	63	4.300	1277.649	56.900	-0.301	
MnIrB	63	2.277	584.998	61.800	-0.271	
MnPdB	63	1.669	688.735	90.200	-0.296	
MnPtB	63	1.531	683.691	73.000	-0.340	
MnRhB	63	2.469	661.411	89.400	-0.273	
Fe ₂ AlB ₂	65	1.964	538.463	0.000	-0.400	
Fe ₃ B ₂	65	4.844	1209.796	73.500	-0.265	
Fe ₂ GaB ₂	65	2.376	541.505	77.700	-0.237	
Fe ₂ IrB ₂	65	4.105	661.715	64.900	-0.236	
Fe ₂ NiB ₂	65	2.656	652.780	90.300	-0.244	
Fe ₂ PtB ₂	65	2.780	611.442	67.000	-0.267	
Fe ₂ ReB ₂	65	2.502	548.443	88.400	-0.232	
Fe ₂ RhB ₂	65	2.527	748.423	94.600	-0.248	
Fe ₂ ZnB ₂	65	2.122	419.456	53.500	-0.248	
Mn ₂ FeB ₂	65	1.577	1165.646	70.900	-0.344	

Table S9: The novel MAB and Non-MAB phases with larger magnetic deformation Σ_{M} (>1.5%).

Mn ₂ IrB ₂	65	2.060	789.006	45.900	-0.354
Mn ₂ PtB ₂	65	1.920	869.433	77.100	-0.384
Mn ₂ ReB ₂	65	2.346	635.442	80.700	-0.319
Mn ₂ RhB ₂	65	2.093	833.085	71.100	-0.346
Mn ₂ RuB ₂	65	2.123	700.555	95.800	-0.304
Mn ₂ TcB ₂	65	2.146	622.289	99.151	-0.320
Fe ₃ AlB ₄	47	2.119	513.407	0.000	-0.445
Fe ₃ BeB ₄	47	2.068	532.907	46.900	-0.240
Fe ₃ ZnB ₄	47	2.423	550.002	87.600	-0.194
Fe ₄ BeB ₆	65	2.096	543.420	92.700	-0.184
Mn ₄ SiB ₆	65	2.227	549.679	93.600	-0.307
Fe ₅ AlB ₂	140	2.196	1048.528	75.700	-0.241
Fe ₅ B ₃	140	2.550	1201.186	20.300	-0.308
Fe ₅ BeB ₂	140	1.535	1214.282	0.000	-0.292
Fe ₅ GaB ₂	140	2.041	1067.626	61.900	-0.219
Fe ₅ GeB ₂	140	2.169	1037.702	24.000	-0.242
Fe ₅ SiB ₂	140	2.033	1027.393	0.000	-0.359
Fe ₅ ZnB ₂	140	1.730	1136.984	97.500	-0.142
Mn ₅ B ₃	140	1.813	929.282	36.600	-0.391
Co ₃ Fe ₂ B ₂	10	2.038	1080.426	97.677	-0.160
Fe ₃ Co ₂ B ₂	10	2.935	1180.767	84.000	-0.186
Fe_5B_2	10	3.257	1379.485	58.500	-0.210
Mn ₃ Co ₂ B ₂	10	3.189	1342.777	90.900	-0.227
$Mn_3Rh_2B_2$	10	1.877	807.529	97.979	-0.242
$Fe_3Co_2B_2$	65	6.170	1291.798	88.400	-0.182
Fe_5B_2	65	6.557	1448.993	56.600	-0.211
Fe ₃ Ir ₂ B ₂	65	2.370	792.503	74.300	-0.174
$Fe_3Si_2B_2$	65	1.984	353.213	91.300	-0.315
$Fe_3Zn_2B_2$	65	1.584	571.752	90.300	-0.156
$Mn_{3}Al_{2}B_{2} \\$	65	1.855	372.455	6.800	-0.406
Mn ₃ Co ₂ B ₂	65	5.712	1348.995	70.000	-0.248
Mn ₃ Ga ₂ B ₂	65	2.694	417.894	95.000	-0.249
$Mn_3Ir_2B_2$	65	5.165	992.463	49.800	-0.302
$Mn_3Pt_2B_2$	65	2.980	972.699	86.800	-0.351
Mn ₃ Rh ₂ B ₂	65	4.987	1081.082	51.900	-0.299
Co ₄ Fe ₃ B ₂	123	1.505	1141.436	74.500	-0.145
Fe4Co3B2	123	3.693	1311.878	88.300	-0.136
Fe ₇ B ₂	123	3.748	1484.725	37.100	-0.171
Fe ₄ AgB ₄	71	1.522	633.953	65.711	-0.269
Fe ₄ AlB ₄	71	2.337	604.617	0.000	-0.417

Fe ₄ AuB ₄	71	1.867	654.290	47.398	-0.288
Fe_4B_5	71	2.496	556.735	65.690	-0.269
Fe4BeB4	71	2.137	523.344	0.000	-0.377
Fe ₄ CoB ₄	71	3.988	934.922	28.064	-0.335
Fe ₄ CrB ₄	71	3.255	871.794	79.505	-0.309
Fe ₄ CuB ₄	71	2.607	690.269	31.145	-0.304
Fe ₅ B ₄	71	4.396	1032.848	1.192	-0.354
Fe ₄ GaB ₄	71	2.529	607.816	0.000	-0.343
Fe ₄ GeB ₄	71	2.465	640.336	87.855	-0.247
Fe ₄ IrB ₄	71	3.811	714.201	2.704	-0.332
Fe ₄ LiB ₄	71	1.538	645.627	29.081	-0.306
Fe ₄ MnB ₄	71	4.724	1037.000	32.256	-0.351
Fe ₄ MoB ₄	71	2.787	637.712	51.919	-0.331
Fe ₄ NbB ₄	71	1.866	581.800	67.980	-0.381
Fe ₄ NiB ₄	71	3.193	711.144	7.499	-0.346
Fe ₄ OsB ₄	71	3.073	664.139	41.614	-0.293
Fe ₄ PdB ₄	71	2.601	695.196	25.071	-0.327
Fe ₄ PtB ₄	71	3.375	717.540	8.625	-0.344
Fe ₄ ReB ₄	71	3.035	672.519	25.576	-0.322
Fe ₄ RhB ₄	71	3.345	752.215	20.018	-0.338
Fe ₄ RuB ₄	71	3.088	717.097	38.379	-0.304
Fe ₄ SiB ₄	71	2.735	614.661	24.593	-0.342
Fe ₄ TaB ₄	71	1.913	560.842	73.161	-0.386
Fe ₄ TcB ₄	71	3.051	695.087	36.102	-0.322
Fe ₄ VB ₄	71	2.888	750.986	86.301	-0.374
Fe ₄ WB ₄	71	2.767	641.107	56.825	-0.323
Fe ₄ ZnB ₄	71	2.404	624.239	0.000	-0.348
Mn ₄ AuB ₄	71	1.609	775.212	89.408	-0.355
Mn ₄ CrB ₄	71	1.784	766.225	90.249	-0.384
Mn ₄ IrB ₄	71	1.824	905.022	5.220	-0.439
Mn ₅ B ₄	71	1.655	999.941	51.481	-0.417
Mn ₄ OsB ₄	71	2.039	850.492	40.142	-0.404
Mn ₄ PtB ₄	71	1.699	919.450	34.329	-0.437
Mn ₄ ReB ₄	71	2.019	785.087	28.278	-0.416
Mn ₄ RhB ₄	71	1.826	935.596	19.359	-0.435
Mn ₄ RuB ₄	71	1.949	864.614	38.705	-0.405
Mn ₄ TcB ₄	71	1.932	781.253	45.509	-0.411

Compounds	Space _	Lattice Constant (Å)		Convex Hull	Sourco	
Compounds	Group	a	b	c	(eV/atom)	Source
CrAlB	63	2.969	3.004	13.881	0.011	This work
		2.969	3.003	13.889	0.008	Ref. 13
MnAlB	63	2.988	2.953	13.908	0.066	This work
		2.989	2.955	13.859	0.065	Ref. 13
Cr ₂ AlB ₂	65	2.932	2.924	11.051	0	This work
		2.934	2.924	11.051	0	Ref. 13
Mn ₂ AlB ₂	65	2.831	2.894	11.080	0	This work
		2.831	2.896	11.074	0	Ref. 13
Fe ₂ AIB ₂	65	2.851	2.916	11.019	0	This work
		2.853	2.917	11.024	0	Ref. 13
Cr ₃ Al ₂ B ₂	65	2.950	2.936	17.311	0.046	This work
		2.951	2.936	17.313	0.038	Ref. 13
$Mn_{3}Al_{2}B_{2}$	65	2.832	2.853	17.788	0.007	This work
		2.833	2.851	17.863	0.004	Ref. 13
$Fe_{3}Al_{2}B_{2}$	65	2.872	2.912	16.537	0.033	This work
		2.875	2.913	16.536	0	Ref. 13
Ni ₃ Al ₂ B ₂	65	2.831	2.961	16.872	0.087	This work
		2.840	2.962	16.926	0.084	Ref. 13
Cr₃AlB₄	47	2.939	2.939	8.091	0	This work
		2.939	2.939	8.088	0	Ref. 13
Mn₃AlB₄	47	2.937	2.834	8.164	0.038	This work
		2.937	2.835	8.153	0.036	Ref. 13
Fe ₃ AIB ₄	47	2.961	2.818	8.149	0.065	This work
		2.960	2.819	8.144	0.063	Ref. 13
Cr ₄ AlB ₆	65	2.943	2.947	21.328	0.012	This work
		2.944	2.947	21.325	0.008	Ref. 13

Table S10: Comparing the current MAB results with previous predicted results from Ref. 13.

Reference

[1] Kresse, G.; Furthmueller, J. Efficient iterative schemes for ab initio total energy calculations using a plane-wave basis set. *Phys. Rev. B* **1996**, 54, 11169.

[2] Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. *Phys. Rev. B* 1999, 59, 1758.

[3] Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. *Phys. Rev. B* **1992**, 46, 6671.

[4] Gao, Q.; Opahle, I.; Gutfleisch, O.; Zhang, H. Designing rare-earth free permanent magnets in Heusler alloys via interstitial doping. *Acta Mater.* **2020**, 186, 355–362.

[5] Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scripta Mater. 2015, 108, 1-5.

[6] Springford, M.Electrons at the Fermi surface; Cambridge University Press, 2011.

[7] Koepernik, K.; Eschrig, H. Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme. *Phys. Rev. B* **1999**, 59, 1743.

[8] Bocarsly, J. D.; Levin, E. E.; Garcia, C. A.; Schwennicke, K.; Wilson, S. D.; Seshadri, R. A simple computational proxy for screening magnetocaloric compounds. *Chem. Mater.* **2017**, 29, 1613–1622.

[9] Ke, L.; Harmon, B. N.; Kramer, M. J. Electronic structure and magnetic properties in T₂AlB₂ (T= Fe, Mn, Cr, Co, and Ni) and their alloys. *Phys. Rev. B* **2017**, 95, 104427.

[10] Potashnikov, D.; Caspi, E.; Pesach, A.; Hoser, A.; Kota, S.; Verger, L.; Barsoum, M.; Felner, I.; Keren, A.; Rivin, O.

Magnetic ordering in the nano-laminar ternary Mn₂AlB₂ using neutron and X-ray diffraction. *J. Magn. Magn. Mater.* **2019**, 471, 468–474.

[11] Cedervall, J.; Andersson, M. S.; Iusan, D.; Delczeg-Czirjak, E. K.; Jansson, U.; Nord-blad, P.; Sahlberg, M. Magnetic and mechanical effects of Mn substitutions in AlFe₂B₂. *J. Magn. Mater.* **2019**, 482, 54-60.

[12] Chai, P.; Stoian, S. A.; Tan, X.; Dube, P. A.; Shatruk, M. Investigation of magnetic properties and electronic structure of layered-structure borides AIT₂B₂ (T= Fe, Mn,Cr) and AIFe_{2-x}Mn_xB₂. *J. Solid State Chem.* **2015**, 224, 52–61.

[13] M. Khazaei, J.Wang, M. Estili, A. Ranjbar, S. Suehara, M. Arai, K. Esfarjani and S. Yunoki. Novel MAB phases and insights into their exfoliation into 2D MBenes. *Nanoscale*, **2019**, 11, 11305–11314.