Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

# Supporting Information for

# Enabling Superior Hybrid Capacitive Deionization Performance in NASICON-Structured Na<sub>3</sub>MnTi(PO<sub>4</sub>)<sub>3</sub>/C by Incorporating Two-Species

# **Redox Reaction**

Shiyong Wang <sup>a, b</sup>; Gang Wang <sup>a\*</sup>; Chi He <sup>b</sup>; Ningbo Gao <sup>b</sup>; Bing Lu <sup>a</sup>; Lin Zhao <sup>a</sup>;

Jiaze Weng <sup>a</sup>; Shanshan Zeng <sup>a</sup>; Changping Li <sup>a\*</sup>

 <sup>a</sup> School of Environment and Civil Engineering, Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523106, Guangdong, PR China
 <sup>b</sup> School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China

<sup>\*</sup> Corresponding Authors

E-mail: wghy1979@163.com (G Wang)

licpbit@hotmail.com (CP Li)

#### 1. Experimental Section

#### 1.1 Synthesis of NTMP/C

The NTMP/C composites were synthesized by a facile sol-gel method with postannealing. In a typical synthesis, stoichiometric amount of sodium acetate (CH<sub>3</sub>COONa), manganese acetate tetrahydrate ((Mn(CH<sub>3</sub>COO)<sub>2</sub>·4H<sub>2</sub>O), ammonium biphosphate (NH<sub>4</sub>H<sub>2</sub>PO<sub>4</sub>) and anhydrous citric acid (C<sub>6</sub>H<sub>8</sub>O<sub>7</sub>) were dissolved into 50 mL deionized water with magnetic stirring. Then the titanium isopropoxide with stoichiometric ratio was added into above mixture. The mixture was heated at 80 °C under stirring to evaporate the water and then further dried in an oven at 100 °C. The resulting material was ground and sintered at 600 °C for 12 h in a tube furnace under argon atmosphere to obtain NTMP/C, the heating rate in the pyrolysis process was 10 °C min<sup>-1</sup>.

#### 1.2 Materials characterization

The morphologies and structures of the samples were characterized through field emission scanning electron microscopy (FE-SEM, FEI Sirion200) and transmission electron microscopy (TEM, JEM-2010F). The crystal structure and phase composition of the composites were investigated using powder X-ray diffraction (XRD, Bruker D8). Thermogravimetric analysis (TGA) was performed with TG209 (NETZSCH Co.). XPS measurements were performed with an ESCALAB 250 (Thermo Scientific, USA) by using Al K $\alpha$  (hv = 1486.6 eV) X-ray radiation. Inductively coupled plasma atomic emission spectroscopy (ICP-MS) was used to analyze the chemical composition of the NTMP/C samples and concentration of Mn and Ti in the tank after the cyclic test.

### 1.3 Electrochemical Measurements

Cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) were conducted by using a CHI 660E electrochemical workstation in 1 M NaCl solution. A three-electrode system consisting of a platinum foil as the counter electrode, an Ag/AgCl electrode (saturated KCl) as the reference electrode, and the sample was used as the working electrode. To prepare the working electrodes, a homogeneous slurry of sample, polytetrafluoroethene (PTFE), and carbon black with the mass ratio of 8:1:1 in ethanol was pressed by a rolling mill into a film and dried at 80 °C overnight. The obtained electrodes were pushed onto a titanium mesh which used as current collectors. The specific capacitance (C, F g<sup>-1</sup>) was calculated from the CV curves as **Equation 1**:

$$C = \frac{\int I dt}{2 \times v \times \Delta V \times m} \tag{1}$$

Where C is the specific capacitance (F g<sup>-1</sup>), I is the response current density(A), v is the potential scanning rate (V s<sup>-1</sup>),  $\Delta$ V is the voltage change (V), and m is the active material mass (g).

#### 1.4 HCDI experiments

To prepare the HCDI electrodes, 82.5 wt% active materials, 10 wt% carbon black, 6 wt% polyvinyl butyral (PVB), and 1.5 wt% polyvinylpyrrolidone (PVP) were mixed together to obtain a homogeneous slurry. Subsequently, the resulting slurry of solids was cast on a graphite paper ( $5 \times 7 \text{ cm}^2$ ) and then dried at 80 °C overnight. The thickness of NTMP/C and AC are 100 and 120  $\mu$ m, respectively. A AC electrode, a NTMP/C electrode, and a piece of anion exchange membrane (200  $\mu$ m, Hangzhou Iontech Environmental Technology Co., Ltd. Zhejiang, China) were assembled into a HCDI (Figure S3). Different concentrations of NaCl and voltages were employed to investigate the desalination performance of the NTMP/C in various operation conditions. Ion removal step was conducted by applying a voltage (0.4 V to 1.2 V) for a certain time, while the captured ions were released by applying negative voltage (-0.4 V to -1.2 V) for a certain time. A tank (2.5L) of NaCl aqueous solution with different concentrations (100 to 2000 mg L<sup>-1</sup>, or 1.7 mM to 34.19 mM) was pumped into the CDI setup by a peristaltic pump at a flow rate of 9 mL min<sup>-1</sup>, and then flowed into another tank. An electrochemical workstation (CHI 660E) was used to supply the needed voltage. The changes of effluent conductivity and pH were recorded by an ion conductivity meter and pH monitor systems. The testing temperature in the capacitive deionization experiments was maintained at 25 °C. The NaCl solution concentration was calculated by a calibration curve according to the conductivity profiles. The ion removal capacity (IRC,  $\Gamma$ , mg g<sup>-1</sup>), charge consumed ( $\Sigma$ , C g<sup>-1</sup>), charge efficiency ( $\Lambda$ ) and energy consumption (E<sub>con</sub>, KJ mol<sup>-1</sup>) were defined as **Equation 2**, Equation 3, Equation 4 and Equation 5, respectively:

$$\Gamma = \frac{\Phi \times \int (C_0 - C_t) dt}{m}$$

$$\Sigma = \frac{\int i dt}{m}$$
(2)
(3)

$$\Lambda = \frac{\Gamma \times F}{M \times \Sigma} \tag{4}$$

$$E_{con} = \frac{M \times U \int i dt}{\Gamma \times m}$$
<sup>(5)</sup>

Where  $\Phi$  is the flow rate (mL min<sup>-1</sup>), C<sub>0</sub> and C<sub>t</sub> are the influent and the effluent NaCl concentration (mg L<sup>-1</sup>), respectively; m is the mass of active material (g); i is the current during the adsorption process (A); U is the voltage during the adsorption process (V); F is the Faraday constant (96485 C mol<sup>-1</sup>); and M is the molar mass of NaCl (58.5 g mol<sup>-1</sup>)

|         | refinement         |         |                  |      |                         |  |  |  |  |
|---------|--------------------|---------|------------------|------|-------------------------|--|--|--|--|
| space g | space group = R-3c |         | $R_{p} = 5.03\%$ |      | R <sub>wp</sub> = 5.47% |  |  |  |  |
| a (Å) : | a (Å) = 8.82621    |         | c (Å) = 21.72350 |      | α (°) = 90              |  |  |  |  |
| β(      | β (°) = 90         |         | γ (°) = 120      |      | V (ų) = 1465.578        |  |  |  |  |
| Atom    | x                  | У       | z                | Mult | Occupancy               |  |  |  |  |
| Na1     | 0.00000            | 0.00000 | 0.00000          | 6    | 0.883                   |  |  |  |  |
| Na2     | 0.63404            | 0.00000 | 0.25000          | 18   | 0.657                   |  |  |  |  |
| Mn      | 0.00000            | 0.00000 | 0.14899          | 12   | 0.500                   |  |  |  |  |
| Ti      | 0.00000            | 0.00000 | 0.14899          | 12   | 0.500                   |  |  |  |  |
| Р       | 0.29771            | 0.00000 | 0.25000          | 18   | 1.000                   |  |  |  |  |
| 01      | 0.18350            | 0.18154 | 0.08714          | 36   | 1.000                   |  |  |  |  |
| 02      | 0.033322           | 0.20561 | 0.19589          | 36   | 1.000                   |  |  |  |  |

Table S1. Detailed structural information of NTMP/C derived from Rietveld



**Figure S1** (a) CV curves of NTMP/C in the (a) negative and (c) positive potential interval with scan rate of 2 mV s<sup>-1</sup>; (b) Specific capacitance of NTMP/C in the (b) negative and (d) positive potential interval with different scan rates



Figure S2 CV curves of NTMP/C in the (b) negative and (d) positive potential interval with different scan rates



Figure S3 The schematic of the HCDI desalination process



Figure S4 The current response of NTMP/C at different voltage



Figure S5 pH changes of the effluent of NTMP/C at different voltage



**Figure S6** (a) pH changes of the effluent, (b) the desalination curve and (c) current response of NTMP/C of 100 adsorption-desorption cycles



Figure S7 The energy consumption of the NTMP/C during cyclic process



Figure S8 Exploration of the desalination process: ex-situ XRD pattern (Partial enlarged view)



Figure S9 Investigation of the Na intercalate/deintercalated process, the (a) Ti 2p and (b) Mn 2p spectra.



Figure S10 EIS of NTMP/C in a three-electrode configuration

| Materials                                                                         | voltag | Current                 | NaCl                  | IRC      | Cycle  | lon removal rate                        |
|-----------------------------------------------------------------------------------|--------|-------------------------|-----------------------|----------|--------|-----------------------------------------|
|                                                                                   | e (V)  | density                 | (mg L <sup>-1</sup> ) | (mg g⁻¹) | number | (mg g <sup>-1</sup> min <sup>-1</sup> ) |
| PCN6 <sup>1</sup>                                                                 | 1.2    | None                    | 1000                  | 16.29    | 100    | 1.5                                     |
| $3D flower-like MoS_2/rGO^2$                                                      | 1      | None                    | 200                   | 16.82    | 6      | None                                    |
| 3DOM-TIN <sup>3</sup>                                                             | 1.2    | None                    | 500                   | 23.6     | 10     | 3.2                                     |
| $K_{0.03}Cu[Fe(CN)_6]_{0.65} \cdot 0.43H_2O^4$                                    | 1.2    | None                    | 4000                  | 23.2     | 100    | 14.4                                    |
| Na <sub>2</sub> FeP <sub>2</sub> O <sub>7</sub> <sup>5</sup>                      | 1.2    | None                    | 1000                  | 30.2     | None   | 4.86                                    |
| NTP/M <sup>6</sup>                                                                | 1.2    | None                    | 1000                  | 25.9     | 20     | 10.6                                    |
|                                                                                   |        |                         |                       |          |        |                                         |
| $\alpha$ -MnO <sub>2</sub> <sup>7</sup>                                           | 1.2    | None                    | 880                   | 22.1     | 20     | 6.66                                    |
| $Na_4 Ti_9 O_{20}{}^8$                                                            | 1.4    | None                    | 250                   | 23.5     | None   | None                                    |
| rGO/Co <sub>3</sub> O <sub>4</sub> -B <sup>9</sup>                                | 1.6    | None                    | 250                   | 18.63    | 100    | None                                    |
| $L\text{-}S\text{-}\text{Ti}_3\text{C}_2\text{T}_x^{10}$                          | None   | 30 mA g <sup>-1</sup>   | 292                   | 72       | 50     | 1.65                                    |
|                                                                                   |        | 1.6 V                   |                       |          |        |                                         |
| NaOH-Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> <sup>11</sup>                  | 1.2    | None                    | 500                   | 16.02    | None   | None                                    |
| NaMnO <sub>2</sub> <sup>12</sup>                                                  | 1.2    | None                    | 20000                 | 40       | 100    | None                                    |
| Co <sub>0.5</sub> Ni <sub>0.5</sub> -Fe <sub>2</sub> O <sub>4</sub> <sup>13</sup> | 1.2    | None                    | 250                   | 21.84    | 6      | 1.2                                     |
| RGO/Mn <sub>3</sub> O <sub>4</sub> <sup>14</sup>                                  | 1.2    | None                    | 1000                  | 34.5     | 20     | 1.14                                    |
| porous $Ti_3C_2T_x$                                                               | 1.2    | None                    | 10000                 | 45       | 60     | None                                    |
| MXene aerogel <sup>15</sup>                                                       |        |                         |                       |          |        |                                         |
| CuFe@NiFe PBA <sup>16</sup>                                                       | None   | 0.5 mA cm <sup>-1</sup> | 2900                  | 71.8     | 50     | None                                    |
| MnO <sub>2</sub> -1h <sup>17</sup>                                                | 1.2    | None                    | 500                   | 21.32    | None   | 0.7                                     |
| Mo <sub>1.33</sub> C-MXene <sup>18</sup>                                          | 0.8    | None                    | 35100                 | 15       | 40     | None                                    |
| NiHCF/rGO-10 <sup>19</sup>                                                        | 1.2    | None                    | 500                   | 22.8     | 100    | None                                    |
| FePO <sub>4</sub> <sup>20</sup>                                                   | 1.2    | None                    | 2340                  | 50.13    | 10     | 4.74                                    |
| NTP/C <sup>21</sup>                                                               | 1.6    | None                    | 1000                  | 66.9     | 30     | None                                    |
| Co <sub>0.5</sub> Ni <sub>0.5</sub> Fe <sub>2</sub> O <sub>4</sub> <sup>22</sup>  | 1.2    | None                    | 250                   | 21.84    | 6      | 1.2                                     |
| NTMP/C (this work)                                                                | 1.2    | None                    | 2000                  | 72.2     | 100    | 21.6                                    |

Table S2. Comparison of various reported electrodes applied for CDI

|                                 | Mn <sup>3+</sup> /(Mn <sup>3+</sup> + Mn <sup>2+</sup> ) | Ti <sup>4+</sup> /(Ti <sup>3+</sup> + Ti <sup>4+</sup> ) |  |  |
|---------------------------------|----------------------------------------------------------|----------------------------------------------------------|--|--|
| Pristine                        | 0.306                                                    | 0.475                                                    |  |  |
| Intercalation-1 <sup>st</sup>   | 0.261                                                    | 0.367                                                    |  |  |
| Deintercalation-1 <sup>st</sup> | 0.368                                                    | 0.531                                                    |  |  |
| Intercalation-3 <sup>th</sup>   | 0.275                                                    | 0.364                                                    |  |  |
| Deintercalation-3 <sup>th</sup> | 0.365                                                    | 0.525                                                    |  |  |

Table S3 The proportion of  $Mn^{3+}$  and  $Ti^{4+}$  in NTMP/C during the desalination process

## Reference

- 1. T. Lu, Y. Liu, X. Xu, L. Pan, A. A. Alothman, J. Shapter, Y. Wang and Y. Yamauchi, Sep. Purif. Technol., 2021, **256**, 117771.
- 2. W. Peng, W. Wang, G. Han, Y. Huang and Y. Zhang, *Desalination*, 2020, **473**, 114191.
- 3. Y. Wu, G. Jiang, G. Liu, G. Lui, Z. P. Cano, Q. Li, Z. Zhang, A. Yu, Z. Zhang and Z. Chen, *J. Mater. Chem. A*, 2019, **7**, 15633-15639.
- 4. S. Choi, B. Chang, S. Kim, J. Lee, J. Yoon and J. W. Choi, *Adv. Funct. Mater.*, 2018, 1802665.
- 5. S. Kim, J. Lee, C. Kim and J. Yoon, *Electrochim. Acta*, 2016, **203**, 265-271.
- Z. Chen, X. Xu, Z. Ding, K. Wang, X. Sun, T. Lu, M. Konarova, M. Eguchi, J. G. Shapter, L. Pan and Y. Yamauchi, *Chem. Eng. J.*, 2020, DOI: https://doi.org/10.1016/j.cej.2020.127148, 127148.
- B. W. Byles, D. A. Cullen, K. L. More and E. Pomerantseva, *Nano Energy*, 2018, 44, 476-488.
- 8. F. Zhou, T. Gao, M. Luo and H. Li, *Chem. Eng. J.*, 2018, **343**, 8-15.
- 9. G. Divyapriya, K. K. Vijayakumar and I. Nambi, *Desalination*, 2019, **451**, 102-110.
- 10. X. Shen, Y. Xiong, R. Hai, F. Yu and J. Ma, *Environ. Sci. Technol.*, 2020, **54**, 4554-4563.
- 11. B. Chen, A. Feng, R. Deng, K. Liu, Y. Yu and L. Song, *ACS Appl. Mater. Interfaces*, 2020, **12**, 13750-13758.
- 12. S. Wang, G. Wang, X. Che, S. Wang, C. Li, D. Li, Y. Zhang, Q. Dong and J. Qiu, *Environ. Sci.: Nano*, 2019, **6**, 2379-2388.
- 13. A. Hai, B. Alqassem, G. Bharath, K. Rambabu, I. Othman, M. Abu Haija and F. Banat, *Electrochim. Acta*, 2020, **363**, 137083.
- 14. G. Bharath, A. Naman, H. Abdul, B. Fawzi, S. Dennyson, T. Hanifa and R. V. Mangalaraja, *Electrochim. Acta*, 2020, DOI: 10.1016/j.electacta.2020.135668.
- W. Bao, X. Tang, X. Guo, S. Choi, C. Wang, Y. Gogotsi and G. Wang, *Joule*, 2018, 2, 778-787.
- 16. Y. Zhao, B. Liang, X. Wei, K. Li, C. Lv and Y. Zhao, *J. Mater. Chem. A*, 2019, **7**, 10464-10474.
- 17. J. Jin, M. Li, M. Tang, Y. Li, Y. Liu, H. Cao and F. Li, *ACS Sustainable Chem. Eng.*, 2020, **8**, 11424-11434.
- 18. P. Srimuk, J. Halim, J. Lee, Q. Tao, J. Rosen and V. Presser, ACS Sustainable Chem. Eng., 2018, 6, 3739-3747.
- 19. Z. Ding, X. Xu, Y. Li, K. Wang, T. Lu and L. Pan, *Desalination*, 2019, **468**, 114078.
- 20. J. Ma, L. Wang, F. Yu and X. H. Dai, *Chem. Eng. J.*, 2019, **370**, 938-943.
- 21. K. Wang, Y. Liu, Z. Ding, Y. Li, T. Lu and L. Pan, *J. Mater. Chem. A*, 2019, **7**, 12126-12133.
- 22. A. Hai, B. Alqassem, G. Bharath, K. Rambabu, I. Othman, M. A. Haija and F. Banat, *Electrochim. Acta*, 2020, **363**, 137083.