Supporting Information

Tight bonding and high-efficiency utilization of S-S moieties to enable ultra-stable and high-capacity alkali-metal conversion batteries

Keyi Chen,^{abc} Wujie Qiu,^{ab} Qingping Wu,^{ac} Xuejun Zhou,^{abc} Jianjun Liu^{ab}

and Chilin Li * abc

^a State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 He Shuo Road, Shanghai 201899, China. Email: <u>chilinli@mail.sic.ac.cn</u>

^bCenter of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.

^c CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China.

Experimental Section

Synthesis of Pyrite Samples. Before the preparation of $FeS_2@S$ and FeS_2 samples, the corresponding iron-based fluoride precursors of FeF_2 and FeF_3 were respectively decorated via a simple polydopamine (PDA) coating method.[S1] In a typical synthesis, the commercial FeF_2 (Alfa Aesar, 98%) or FeF_3 (Strem, 99%) powder and dopamine hydrochloride (Aladdin, 98%) in a mass ratio of 2:1 were successively dispersed into Tris-buffer solution (10 mM, pH \approx 8.5) with magnetic stirring for 12 h. The resultant product was collected via centrifugation, washed with deionized water and ethanol, followed by subsequent drying under vacuum at 80 °C overnight. The sulfuration process refers to our previous work.[S2] In brief, the FeF₂-PDA (or FeF₃-PDA) and elemental sulfur (Sigma Aldrich, 99.995%) were mixed in a molar ratio of 6:7 (or 4:5) and continuously heated at 500 $^{\circ}$ C with a rising rate of 2 $^{\circ}$ C/min for 10 h under evacuated and sealed condition. The excess sulfur probably precipitates in the final product.

Synthesis of Carbon Derivative from FeF_x -PDA. For preparation of the carbon derivative FeF_x-PDA-C, the PDA-coated fluorides were annealed without simultaneous sulfuration, and they transform into Fe-FeC_x@C composites. The annealed products were etched in concentrated HCl solution for 10 h to remove Fe-contained species. Finally, the resulting carbon derivatives were obtained by washing with deionized water, filtrating and drying under vacuum overnight.

Visualized Polysulfide Adsorption Test. Li_2S_4 solution (0.25 M) was prepared by dissolving sulfur and lithium sulfide (Li_2S) with a molar ratio of 3:1 in tetraethylene glycol dimethyl ether (TEGDME, Sigma Aldrich) followed by vigorous magnetic stirring for 24 h at 60 °C. The concentration of solution was further diluted into 2.5 mM for adsorption test. 10 mg FeF₂-PDA-C, FeF₃-PDA-C or 20 mg commercial FeS₂ were dispersed in 4.0 mL of the diluted Li_2S_4 /TEGDME solution to achieve thorough adsorption by stirring for 10 h. After adsorption, the suspensions were stayed for a long time until the absorbents were completely precipitated with clear supernatant solutions, for a comparison with the blank control of diluted Li_2S_4 solution.

Physical Characterization. The components and crystallographic structure of both the pyrite samples were analyzed by X-ray powder diffractometer (XRD, Bruker, D8 Discover) with Cu K α radiation in a 2 θ range of 10 °–80 ° at a scan rate of 5 %min. The scanning electron microscopy (SEM, Magellan 400L, FEI) equipped with energy dispersive X-ray spectroscope (EDS) were carried out to observe the morphology, grain size, and element distribution. Transmission electron microscopy (TEM) images and selected area electron diffraction (SAED) patterns of FeS₂@S were collected on JEOL JSM-6700F operated at an acceleration voltage of 200 kV to further confirm the morphology, microstructure, and phase assignment. X-ray photoelectron spectra (XPS) were obtained by PHI5300 XPS spectrometer (250W, 14kV) with an Mg anode source to detect the surface component, elemental valence, and bonding situation of FeS₂@S and FeS₂. DSC 800 from PerkinElmer was performed to take the thermogravimetric analysis (TGA) results under N₂ gas stream and the heating rate of 10 $^{\circ}$ C/min.

Electrochemical Measurement. To preparing the cathodes, a mixture of pyrite powder (FeS₂@S or FeS₂), super P and poly (vinyl difluoride) (PVDF, which is uniformly dissolved in 1-methyl-2-pyrrolidinone NMP) with a weight ratio of 7:2:1 was pasted on pure copper foil and dried in vacuum at 50 °C for 20 h to remove solvent. CR2032-type coin cells were assembled with pyrite cathode, high-purity Li/Na metal anode and glass fiber separator (GF/B, Whatman) in an Ar-filled glove box (<0.1 ppm for water and oxygen). The electrolyte solution for Li or Na metal batteries was prepared by dissolving 1M lithium bis(trifluoromethane)sulfonamide (LiTFSI, Sigma Aldrich) or 1 M sodium trifluomethanesulfonate (NaSO₃CF₃, Aladdin) Sigma Aldrich, 99.5%), in diglyme (DGM, respectively. Galvanostatic charge-discharge measurements of pyrite cathodes vs. Li/Li⁺ (Na/Na⁺) were performed at room temperature under different rates from 0.1 to 10 C in a voltage range of 1.0-3.0 V for Li cells or 0.5-3.0 V for Na cells on the Land multichannel battery testing system (CT2001A). One C denotes the current density to theoretically achieve four-electron transfer within 1 h for FeS₂. Impedance measurements of cells based on different pyrites before cycling and after different cycling at 1C were done by using a Solartron frequency analyzer (1260-1296) in a frequency range from 100 kHz to 0.1 Hz. Cyclic voltammetry (CV) and Tafel analysis were carried out on an electrochemical workstation (VersaSTAT3, AMETEK Scientific Instruments). CV measurements were run in a voltage range from 1.0 to 3.0 V for Li cells or from 0.5 to 3.0 V for Na cells at different scan rates from 0.2 to 1.5 mV/s. Tafel analysis was performed on the tenth discharge process by holding the Li or Na cells at 1.62 V or 1.52 V respectively (i.e. at the voltage of dominant conversion plateau) for 1 h, followed by a linear scan at 1 mV/s in the voltage range of ± 150 mV around the open-circuit voltage.

Calculation Details. The first-principles calculations were performed in the framework of the density-function theory using the plane wave basis VASP code,[S3,S4] implementing the generalized gradient approximation (GGA) of

Perdew-Burke-Ernzerhof (PBE) form.[S5] The interactions between the ions and electrons were described by the all-electron projector augmented wave (PAW) method,[S6,S7] with plane waves up to a cutoff energy of 500 eV. The Hubbard *U* (DFT+*U*) correction was used, and an effective interaction parameter $U_{eff} = 5.3 \text{ eV}$ was used for Fe 3*d* electrons.[S8] Spin polarized calculations were performed in all configurations. To avoid the interactions between adjacent layers, the vacuum distance was set to 20 Å. The Brillouin-zone integrations were performed on the grid of Monkhorst-Pack procedure with $2 \times 2 \times 1 k$ -point meshes.[S9] The binding strength between S_8/Li_2S_n and the substrate material (SM) was evaluated by the binding energy (*E_b*), which is described as $E_b = E_{S_8/Li_2S_n+SM} - E_{S_8/Li_2S_n} - E_{SM}$, where E_{SM} , E_{S_8/Li_2S_n} and E_{S_8/Li_2S_n+SM} represent the total energies of the substrate, the sulfur molecule S_8 (or polysulfide molecule Li_2S_n). Therefore, a negative binding energy shows that the binding interaction between S_8/Li_2S_n and SM is favored.

Figure S1. XRD patterns of FeS₂ and FeS₂@S in a 2θ range of 10° -80°.

Figure S2. TGA curves of FeS₂@S and commercial FeS₂ with weight loss estimated based on the mass evolution under an N₂ gas steam from room temperature to 500 °C. Nanostructured FeS₂@S tends to absorb moisture during air exposure, thus more weight loss below 120 °C corresponds to the removal of surface water. At higher temperatures, pyrite probably undergoes partial decomposition involving the escape of S-S moieties from FeS₂ lattices under N₂ flowing.[S10] More dramatic TGA curve dropping for FeS₂@S within a temperature range of 100–500 °C is associated with the complete evaporation of elemental sulfur.

Figure S3. SEM images of (a) $FeS_2@S$ and (b) FeS_2 in overview scale. (c) SEM image of FeS_2 in magnified scale.

Figure S4. EDS mapping images (containing Fe, S, C and O elements) of FeS₂@S.

Figure S5. (a) TEM and (b,c) HRTEM images of FeS₂@S. Continuous and conformal carbon coatings on the surface of compactly stacked grains are clearly observed. The typical stripes with lattice d-spacing of 2.22 Å and 3.14 Å correspond to (211) and (111) planes of cubic FeS₂ phase. The S lattice stripes for (222) plane are found in the grain boundary.

Figure S6. SAED pattern of $FeS_2@S$. There is a vague diffraction ring with small radius, which is assigned to (222) plane of elemental sulfur, besides the dominant diffraction rings belonging to pyrite FeS_2 phase.

Figure S7. XPS spectra of (a) Fe 2p, (b) N 1s and (c) O 1s for FeS₂@S and FeS₂.

Figure S8. Galvanostatic charge-discharge curves of Li cells based on (a) $FeS_2@S$ and (b) FeS_2 cathodes during the first ten cycles at 0.1 C in a voltage range of 1.0–3.0 V. (c) Cycling performance and coulombic efficiency of $FeS_2@S$ and its comparison with FeS_2 at 0.1 C. (d) Galvanostatic charge-discharge curves of Li/FeS₂ cell depending on various rates from 0.1 to 10 C. The capacity of Li/FeS₂@S cell undergoes an activation process and even exceeds the theoretical value of pyrite during initial cycles, indicating an effective utilization of extra S–S moieties.

Figure S9. Galvanostatic charge-discharge curves of Na cells based on (a) $FeS_2@S$ and (b) FeS_2 cathodes in a voltage range of 0.5–3.0 V at 0.2 C during the first ten cycles. (c) Galvanostatic charge-discharge curves of Na/FeS₂ cell under different rates from 0.1 to 10 C.

Figure S10. Comparison of energy and power densities between Na/FeS₂@S cell and some reported room temperature Na–S batteries. The energy/power density is estimated based on the weight of electrode including active material, conductive additive and binder.

Figure S11. Ragone plots of as-prepared $FeS_2@S$ composite and other typical metal sulfides for (a) Li-storage and (b) Na-storage.

Figure S12. CV curves of FeS₂@S cathode at various scan rates from 0.2 to 1.5 mV/s (a) between 1.0 and 3.0 V for Li cell and (c) between 0.5 and 3.0 V for Na cell with the characteristic peaks labeled. Power law dependence of measured current on scan rate at the positions of characteristic peaks in CV curves based on log $i(V) = b \log v + \log a$ for (b) Li cell and (d) Na cell based on FeS₂@S cathode.

Figure S13. Electrochemical impedance spectra of (a) pristine and cycled Li cells based on FeS₂@S and FeS₂ cathodes after (b)100 cycles and (c) 400 cycles at 1 C. (d) Corresponding evolution of interface resistance R_i values (from the total contribution of SEI resistance R_f and charge transfer resistance R_{ct}) for pristine and cycled Li cells.

Table S1. Computational details of binding energies between Li_2S_n species and FeS_2 substrate. The energies of FeS_2 , Li_2S_n molecules, their combinations, and corresponding binding energies are tabulated.

Polysulfide Molecules	E _{Li2Sn} (eV)	Substrate	E _{SM} (eV)	E _{Li2Sn+SM} (eV)	$E_{b}(eV)$
Li ₂ S	-7.91	FeS ₂	-674.73	-685.23	-2.59
Li_2S_2	-13.02			-688.98	-1.23
Li_2S_4	-22.38			-701.69	-4.58
Li_2S_6	-32.40			-710.57	-3.44
Li_2S_8	-39.13			-711.79	2.07

References

- [S1] M. H. Ryou, Y. M. Lee, J. K. Park, J. W. Choi, Adv. Mater. 2011, 23, 3066.
- [S2] K. Y. Chen, Y. Zhang, C. L. Li, ACS Nano 2018, 12, 12444.
- [S3] G. Kresse, J. Furthmüller, Comp. Mater. Sci. 1996, 6, 15.
- [S4] G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
- [S5] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- [S6] P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.
- [S7] G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
- [S8] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D.
- Gunter, D. Skinner, G. Ceder, APL Mater. 2013, 1, 011002.
- [S9] H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.
- [S10] S. Dallek, B. Larrick, Thermochim. Acta 1985, 95, 139.
- [S11] M. Kohl, F. Borrmann, H. Althues, S. Kaskel, Adv. Energy Mater. 2016, 6, 1502185.
- [S12] T. H. Hwang, D. S. Jung, J. S. Kim, B. G. Kim, J. W. Choi, *Nano Lett.* 2013, 13, 4532.
- [S13] X. W. Yu, A. Manthiram, Adv. Energy Mater. 2015, 5, 1500350.
- [S14] S. Y. Wei, S. M. Xu, A. Agrawral, S. Choudhury, Y. Y. Lu, Z. Y. Tu, L. Ma, L. A. Archer, *Nat. Commun.* 2016, 7, 11722.
- [S15] R. Carter, L. Oakes, A. Douglas, N. Muralidharan, A. P. Cohn, C. L. Pint, Nano

Lett. 2017, 17, 1863.

[S16] C. L. Wang, H. Wang, X. F. Hu, E. Matios, J. M. Luo, Y. W. Zhang, X. Lu, W. Y. Li, Adv. Energy Mater. 2018, 9, 1803251.

[S17] T. J. Wu, M. J. Jing, L. Yang, G. Q. Zou, H. S. Hou, Y. Zhang, Y. Zhang, X. Y. Cao, X. B. Ji, Adv. Energy Mater. 2019, 9, 1803478.

[S18] T. T. Yang, W. Gao, B. S. Guo, R. M. Zhan, Q. J. Xu, H. He, S. J. Bao, X. Y. Li,
Y. M. Chen, M. W. Xu, *J. Mater. Chem. A* 2019, *7*, 150.

[S19] R. Tian, Y. Zhou, H. N. Duan, Y. P. Guo, H. Li, K. F. Chen, D. F. Xue, H. Z. Liu, *ACS Appl. Energy Mater.* **2018**, *1*, 402.

[S20] X. Q. Zhang, X. N. Li, J. W. Liang, Y. C. Zhu, Y. T. Qian, Small 2016, 12, 2484.

[S21] J. Lu, G. L. Xia, S. P. Gong, C. L. Wang, P. Jiang, Z. Y. Lin, D. D. Wang, Y. Yang, Q. W. Chen, J. Mater. Chem. A 2018, 6, 12613.

[S22] X. D. Ding, S. Lei, C. F. Du, Z. L. Xie, J. R. Li, X. Y. Huang, Adv. Mater. Interfaces 2019, 6, 1900038.

[S23] W. Y. Fang, H. B. Zhao, Y. P. Xie, J. H. Fang, J. Q. Xu, Z. W. Chen, ACS Appl. Mater. Interfaces 2015, 7, 13044.

[S24] X. Gao, B. Y. Wang, Y. Zhang, H. Liu, H. K. Liu, H. Wu, S. X. Dou, *Energy Storage Mater.* **2019**, *16*, 46.

[S25] C. B. Zhu, Y. R. Wen, P. A. van Aken, J. Maier, Y. Yu, *Adv. Funct. Mater.* **2015**, 25, 2335.

[S26] K. Zhang, M. Park, L. M. Zhou, G. H. Lee, J. Shin, Z. Hu, S. L. Chou, J. Chen,Y. M. Kang, *Angew. Chem. Int. Ed.* 2016, 55, 12822.

[S27] Y. Ma, Y. J. Ma, D. Bresser, Y. C. Ji, D. Geiger, U. Kaiser, C. Streb, A. Varzi, S. Passerini, ACS Nano 2018, 12, 7220.

[S28] X. Q. Xie, T. Makaryan, M. Q. Zhao, K. L. Van Aken, Y. Gogotsi, G. X. Wang, Adv. Energy Mater. 2016, 6, 1502161.

[S29] Y. P. Liu, H. T. Wang, L. Cheng, N. Han, F. P. Zhao, P. R. Li, C. H. Jin, Y. G. Li, *Nano Energy* 2016, 20, 168.

[S30] X. Zhao, H. E. Wang, R. C. Massé, J. Cao, J. H. Sui, J. Y. Li, W. Cai, G. Z. Cao, J. Mater. Chem. A 2017, 5, 7394. [S31] D. X. Yu, Q. Pang, Y. Gao, Y. J. Wei, C. Z. Wang, G. Chen, F. Du, *Energy Storage Mater.* **2018**, *11*, 1.

[S32] H. Park, J. Kwon, H. Choi, D. Shin, T. Song, X. W. Lou, ACS Nano 2018, 12, 2827.

[S33] Y. N. Liu, L. P. Li, J. H. Zhu, T. Meng, L. Ma, H. Zhang, M. W. Xu, J. Jiang, C.
M. Li, ACS Appl. Mater. Interfaces 2018, 10, 27911.