Electronic Supplementary Information for

Hydrothermal synthesis of palladium nitrides as robust multifunctional electrocatalysts for fuel cells

Ruiyun Guo, Ke Zhang, Yaming Liu, Yucheng He, Chao Wu* and Mingshang Jin*

^aFrontier Institute of Science and Technology and State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China. ^bFrontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.

*To whom correspondence should be addressed. E-mail: jinm@mail.xjtu.edu.cn.

Figure S1. (a) TEM image of the obtained Pd nanocubes and (b) corresponding histogram of size distribution. (c) HRTEM image of an individual Pd nanocube and (d) FFT pattern of Pd nanocube shown in (c) recorded along the <001> zone axis.

Figure S2. XRD patterns of Pd nanocubes and the products obtained using the standard procedures, except for the addition of urea.

Figure S3. XPS spectrum of Pd₂N nanocrystals.

Figure S4. (a) Low and (c, d) high magnification TEM images of Pd₂N nanocrystals, and (b) the corresponding histogram of size distribution counted from (a).

Figure S5. XRD patterns of Pd_2N nanocrystals after 10 months of storage in air and annealing under N_2 atmosphere at 200 °C for 2 h, respectively.

Figure S6. XRD patterns of the products obtained with the reaction temperature increased from 180 to 200 °C under the standard synthetic conditions.

Figure S7. XPS analysis of N 1s in $PdN_{0.35}$ nanocrystals.

Figure S8. XRD patterns of $PdN_{0.35}$ nanocrystals after 10 months of storage in air and annealing under N₂ atmosphere at 200 °C for 2 h, respectively.

Figure S9. CO stripping voltammograms of different catalysts: (a) commercial Pd/C, (b) Pd nanocubes, (c) commercial Pt/C, (d) $PdN_{0.18}$, (e) $PdN_{0.35}$ and (f) Pd_2N nanocrystals, respectively. The red line is the first scan and the black line is the second scan.

Figure S10. (a) Low magnification TEM and (b) HRTEM images of Pd_2N nanocrystals after 10,000-cycles ADTs.

Figure S11. Representative TEM images of commercial Pd/C and Pt/C catalyst (a, c) before and (b, d) after 10,000-cycles ADTs.

Figure S12. XRD pattern of Pd₂N nanocrystals after 10,000-cycles ADTs.

Figure S13. Comparison of FAOR chronoamperometric stability profiles of Pd_2N nanocrystals, the original Pd nanocubes, and commercial Pd/C catalysts at the potential of 0.4 V_{RHE} .

Figure S14. Comparison of MOR chronoamperometric stability profiles of Pd_2N nanocrystals, the original Pd nanocubes, and commercial Pd/C catalyst at the potential of 0.75 V_{RHE} .

2 Theta (º)	d-spacing (Å)	Intensity (a. u.)	(hkl)	
38.523	2.3351	3640740.73	112	
44.427	2.0375	1575247.36	020	
45.480	1.9928	705944.29	004	
64.642	1.4407	487656.15	220	
65.462	1.4246	902328.32	024	
77.840	1.2261	925727.00	312	
79.358	1.2064	404563.56	116	
82.563	1.1675	472153.63	224	

Table S1. Calculated XRD parameters of tetragonal Pd2N nanocrystals.

Samples	Urea amount (mg)	{111} peak position in 2 $ heta$ (°)	Binding energy of 3d _{3/2} (eV)	Binding energy of 3d _{5/2} (eV)
Pd cube	0	40.11	340.4	335.1
PdN _{0.08}	75	39.81	340.5	335.2
PdN _{0.18}	100	39.40	340.6	335.3
PdN _{0.26}	150	39.11	340.8	335.5
PdN _{0.35}	200	38.82	340.9	335.6

Table S2. XRD and XPS parameters for the original Pd nanocubes and the obtained PdN_x nanocrystals.

Samples	Specific ECSA (m ² g ⁻¹)	E _{1/2} value (V)	Specific activity (@0.9 V mA cm ⁻²)	Mass activity (@0.9 V A mg ⁻¹)	
Commercial Pd/C	42.3	0.821	0.13	0.055	
Pd cube	22.9	0.843	0.35	0.08	
Commercial Pt/C	61.1	0.862	0.18	0.11	
PdN _{0.18}	29.5	0.893	1.49	0.44	
PdN _{0.35}	32.8	0.901	1.80	0.59	
Pd ₂ N	39.9	0.916	2.08	0.83	

Table S3. Specific ECSAs, $E_{1/2}$ values, and the specific and mass activities of the catalysts for ORR in 0.1 M KOH.

Entry	Catalysts	Electrolyte solution	Mass activity (@0.9 V A mg ⁻¹)	Specific activity (@0.9 V mA cm ⁻²)	References
1	Pd ₂ N/C	0.1 M KOH	0.83	2.08	This work
2	PdN _{0.35} /C	0.1 M KOH	0.59	1.80	This work
3	Pd-Te hexagonal nanoplates/C	0.1 М КОН	0.30	N/A	<i>Sci. Ad</i> v., 2020, 6 , eaba9731
4	Pd ₃ Pb/Pd nanosheets/C	0.1 M KOH	0.574	1.31	Nano Lett., 2019, 19 , 1336-1342.
5	$Pd_{59}Cu_{30}Co_{11}$	0.1 M KOH	0.38	0.90	Nat Commun., 2018, 9 , 3702.
6	Au nanowire @Pd _{0.1} @PEI	0.1 M KOH	0.295	N/A	ACS Catal., 2018, 8 , 11287-11295.
7	Pd₃Pb nanoplates	0.1 М КОН	0.78	N/A	Small Methods, 2018, 2 , 1700331.
8	Pd ₆ Ni icosahedra	1 M KOH	0.22	0.66	Sci. Adv., 2018, 4 , 8817.
9	Pd₃Pb tripods/C	0.1 M KOH	0.56	1.76	Chem, 2018, 4 , 359-371.
10	PdCu tetrapod	0.1 M KOH	0.29	0.73	ChemCatChem, 2018, 10 , 925-930.
11	Pd₃Pb nanowire networks	0.1 M KOH	0.61	15.7	J. Mater. Chem. A, 2017, 5 , 23952-23959.
12	Ni@Pd₃/C	0.1 M KOH	0.038	0.13	J. Mater. Chem. A, 2017, 5, 9233-9240.
13	Pd@PtNi	0.1 М КОН	0.0733	N/A	J. Power Sources, 2017, 365, 26-33.
14	Pd-B/C	0.1 M KOH	0.602	0.17	J. Phy. Chem. C, 2017, 121 , 3416-3423.
15	O-Pd ₆ Sn₃Co/C	0.5 М КОН	0.1348@0.85 V	0.5653@0.85 V	J. Electroanal. Chem., 2017, 789 , 167-173.
16	ordered Pd ₃ Pb/C	0.1 M KOH	0.1689	N/A	Nano Lett., 2016, 16 , 2560-2566.
17	Pd@Pt core- island shell	0.1 M KOH	0.26	1.224	Nanoscale, 2016, 8 , 1698-1703.
18	PdCuCo NPs/C-375ºC	0.1 M NaOH	0.13	N/A	Angew. Chem. Int. Ed., 2016, 55 , 9030-9035.
19	PdMn/C-BAE	0.1 M KOH	0.093@0.85 V	0.35@0.85 V	J. Mater. Chem. A, 2016, 4 . 8337-8349.
20	Pd-Ni/CNFN 1:2	0.1 M KOH	0.098@0.85 V	N/A	Int. J. Hydrogen Energy, 2016, 41 , 22538-22546.
21	ordered Pd ₃ Fe/C	0.1 M KOH	0.0974	N/A	J. Am. Chem. Soc., 2015, 137, 7278-7281
22	AuPd alloyed	0.1 М КОН	0.215@0.71 V	0.55@0.71 V	J. Mater. Chem. A, 2015, 3, 5352-5359

Table S4. A list of ORR performance of the most advanced Pd-based electrocatalysts

 from recently published works in alkaline electrolyte.

23	23 Au/Cu ₄₀ Pd ₆₀ NPs	0.1 M KOH	0.43@-0.1V vs.	N/A	J. Am. Chem. Soc., 2014,
	0.1 11 10 10	Ag/AgCl	,,,	136 , 15026-15033.	
24	Pd-P (3)	0.1 M KOH	1.79 @ 0.85 V	2.31@0.85 V	J. Am. Chem. Soc., 2014,
- (-				-	136 , 5217-5220.
25	Pd/W ₁₈ O ₄₉	0.1 M KOH	0.216	0.45	
25	hybrids				J. Am. Chem. Soc., 2014,
26	26 Pd nanoparticles		0.038	0.10	136 , 11687-11697.
20		0.1 M KOH			
27	AuPdCo/C	0.1 M KOH	0.13	N/A	Nat. Commun., 2014, 5 ,
	intermetallic				5185.
28 Pt ₃₇ Cu ₅₆ Au ₇					ACS Catal., 2020, 10 ,
	0.1 M KOH	0.871	1.85	9967-9976	
29 Pd₄Fe				Chem Commun 2018	
	1 441 0	0.1 M KOH	0.975	2.78	EA 7050 7064
	nanoflowers/C	nanotiowers/C			54 , 7058-7061.
30	P0 ₃ PD	0.1 M KOH	1.14	4.7	Nanoscale, 2019, 11 ,
	nanoflowers/C				17301-17307.
9dMo 31 bimetallene/0	PdMo 0.1 M KOH	0.1 M KOH	16.37	11.64	Nature, 2019, 574 , 81-
	bimetallene/C				85.

N/A: not available