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Calculation of density and porosity

The density was calculated using the following equation:

= m
V



Where m and V are the mass and bulk volume of BC/GO or C/rGO aerogel, respectively.

In addition, the porosity of samples was calculated using the following equation:
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Where ρ is the density of BC/GO or C/rGO, ρs is the skeleton density of bacterial cellulose (1.59 g/cm3) or 

carbon (2.2 g/cm3)

Fig. S1 (a) Schematic illustration and (b) thermal conduction simulation of the home-made unidirectional 
freeze-casting equipment.



Fig. S2 Schematic illustration of the piezoresistive testing system.

Fig. S3 SEM images showing the cellular structure of BC/GO-10 aerogel in (a) longitudinal plane and (b) 
transverse plane.
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Fig. S4 TGA curve of BC/GO-10 under nitrogen atmosphere.

Fig. S4 shows the thermogravimetric analysis (TGA) curves of the BC/GO-10 aerogel. The 

weight of the cellulose composite aerogel decreased slightly (2.7%) in the temperature range of 40 

to 100 ℃, which contributed to the loss of moisture. Then, the weight of the cellulose composite 

aerogel decreased sharply from 250 to 370 ℃, indicating the transformation of organic components 

to carbon with the cleaving of the alkyl and methoxy groups of cellulose. After that, the downtrend 

goes slowly with the increasing temperature between 600 to 700 ℃ indicating the stability of the 

carbon aerogel in this range.

Fig. S5 SEM images showing the cellulat structure of pure BC aerogel in the (a) longitudinal plane and (b) 
transverse plane.



Fig. S6 Digital images of (a) BC/GO and (b) C/rGO aerogels with different GO loading (0%, 5%, 10%, 15%, 
20%).



Fig. S7 Density of BC/GO aerogels with different GO loadings before and after the pyrolysis process.

Fig. S8 SEM images showing the cellular structure of the transverse plane of C/rGO-20.



Fig. S9 Digital photos showing the state of the prepared C/rGO-10 aerogel upon a heavy weight.

Fig. S10 Digital photos showing the state of the pure BC during one 50% compression strain cycle.

Fig. S11 RLmin, EABmax versus filler loading for typical microwave absorbing materials.



Fig. S12 The permeability for (a) pure C, (b) C/rGO-10 and (c) C/rGO-20.

Fig. S13 Electrical conductivity of (a) C/rGO aerogels with different rGO loading and (b) C/rGO-10 aerogel 
under different compression strain.



Fig. S14 (a, c) Attenuation constant and (b, d) impedance matching for pure C, C/rGO-10, C/rGO-20 aerogels 
and the C/rGO-10 aerogel under compression of 0%, 30%, 50% and 70%.
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