Supporting Information

Single Mo₁ (W₁, Re₁) Atoms Anchored in Pyrrolic-N₃ Doped Graphene

as Efficient Electrocatalysts for the Nitrogen Reduction Reaction

Wanghui Zhao, +a Lanlan Chen, +a Wenhua Zhang *ab and Jinlong Yang *a

^a Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Centre of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.

jlyang@ustc.edu.cn.

^b CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China

⁺ These authors contributed equally.

^{*} Corresponding Author

Email: whhzhang@ustc.edu.cn;

Results and Discussion

Fig. S1 From (a) to (h) are the structures of V_1 , Cr_1 , Mn_1 , Fe_1 , Nb_1 , Mo_1 , W_1 and Re_1 anchored at the center of pyrrolic-N₃ on graphene. The corresponding bond lengths between metal atoms and the pyrrolic-N are labeled in the adjacent blank. The gray, blue spheres represent carbon and nitrogen atoms, respectively.

Table S1. The total binding energies of M_1 atom anchored at the active center of pyrrolic-N₃–G.

Doped metal	V	Cr	Mn	Fe	Nb	Мо	W	Re
E _b (eV)	9.99	6.92	6.49	8.07	9.14	7.26	6.09	4.29

Fig. S2 From (a) to (h) are the structures of V_1 , Cr_1 , Mn_1 , Fe_1 , Nb_1 , Mo_1 , W_1 and Re_1 anchored at the neighboring carbon sites on graphene. The corresponding metal atoms are labeled in the adjacent blank. The gray, blue spheres represent carbon and nitrogen atoms, respectively.

Fig. S3 From (a) to (h) are the optimized structures of N_2 (end-on and side on modes) and H adsorbed on $V_1(Cr_1, Mn_1, Fe_1, Nb_1, Mo_1, W_1$ and $Re_1)/pyrrolic-N_3-G$. The bond lengths of N-N and M_1 -H are marked next to each other. The gray, blue and white spheres represent carbon, nitrogen and hydrogen atoms, respectively.

Table S2. The calculated energy differences (ΔE) between inclined and vertical configuration when N₂ adsorbed with end-on mode on each M₁/pyrrolic-N₃-G.

Doped metal	V	Cr	Fe	Nb	Мо	W	Re
∆E (eV)	0.05	0.08	0.55	0.26	0.13	-0.06	0.12

Table S3. The calculated adsorption Gibbs free energy of atomic hydrogen and nitrogen molecule with end-on andside-on modes on each M_1 /pyrrolic- N_3 -G.

Doped metal	V	Cr	Mn	Fe	Nb	Мо	W	Re
ΔG _H (eV)	-0.07	0.29	-0.08	0.64	-0.17	-0.07	-0.58	-0.94
$\Delta G_{N2-end-on}$ (eV)	-0.25	-0.05	-0.32	-0.29	-0.28	-0.45	-0.49	-0.71
$\Delta G_{N2-side-on}$ (eV)	0.25	0.46	0.21	0.66	-0.10	-0.22	-0.63	-0.38

Table S4. The reaction Gibbs free energies of the adsorption Gibbs free energies of the second (ΔG_{N2-N2}) and third dinitrogen (ΔG_{2N2-N2}) molecules combined with the adsorption free energies of hydrogen with the presence of one (ΔG_{N2-H}) and two dinitrogen (ΔG_{2N2-H}) on each M₁/pyrrolic-N₃-G.

Doped metal	V	Cr	Mn	Fe	Nb	Мо	W	Re
Numbers of adsorbed N_2	3	2	3	3	3	3	3	3
ΔG _{N2-H} (eV)	0.43	0.84	0.42	0.75	0.23	0.22	-0.17	-0.51
∆G _{2N2} (eV)	-0.12	-0.09	-0.21	-0.17	-0.18	-0.32	-0.25	-0.53
∆G _{2N2-H} (eV)	0.73	1.14	0.59	0.56	0.40	0.57	0.22	0.12
∆G _{3N2} (eV)	-0.10	0.01	-0.18	-0.17	-0.18	-0.16	-0.17	-0.51

Fig. S4 The optimized structures of side view with corresponding bond length of N-N. (a) optimized structures of $*N_2$ -H. (b) optimized structures of $*2N_2$. (C) optimized structures of $*2N_2$ -H. (d) optimized structures of $*3N_2$. The * represent the substrate of $V_1(Cr_1, Mn_1, Fe_1, Nb_1, Mo_1, W_1 \text{ and } Re_1)/pyrrolic-N_3-G. The gray, blue and white spheres represent carbon, nitrogen and hydrogen atoms, respectively.$

Table S5. The calculated adsorption energy of N₂ (${}^{\Delta E_{N_2}}$) and H₂O with the effect of hydrogen bond (${}^{E_{ad}^{b}}$) on M₁/pyrrolic-N₃-G, where the M₁ represents the single transition metal.

Species	E ^b _{ad} (eV)	ΔE_{N_2} (eV)
V ₁ /pyrrolic-N ₃ -G	-0.48	-0.74
Cr ₁ /pyrrolic-N ₃ -G	-0.35	-0.56
Mn ₁ /pyrrolic-N ₃ -G	-0.50	-0.81
Fe ₁ /pyrrolic-N ₃ -G	-0.43	-0.81
Nb ₁ /pyrrolic-N ₃ -G	-0.31	-0.66
Mo ₁ /pyrrolic-N ₃ -G	-0.35	-0.82
W ₁ /pyrrolic-N ₃ -G	-0.50	-1.09
Re ₁ /pyrrolic-N ₃ -G	-0.67	-1.31

Table S6. The numbers of nitrogen molecules effectively binding on M_1 /pyrrolic- N_3 -G, the reaction Gibbs free energy (eV) of the formation of * $2N_2$ -NNH (ΔG_{*NNH}), the adsorption free energy of * $3N_2$ -H (ΔG_{M1-H}) and the potential difference (ΔU) between the formation of * $2N_2$ -NNH and * $3N_2$ -H ($\Delta U = U_{*NNH} - U_{M1-H} = -\Delta G_{*NNH}$ /e - [- ΔG_{M1-H} /e]).

Doped metal	V	Cr	Mn	Fe	Nb	Мо	W	Re
number	3	2	3	3	3	3	3	3
ΔG _{*NNH}	1.22	1.13	1.01	1.76	0.77	0.49	0.33	0.51
ΔG_{M-H}	1.46	1.14	0.74	0.96	0.69	0.68	0.57	0.97
Δυ (V)	0.24	0.01	-0.27	-0.80	-0.08	0.19	0.24	0.46

Table S7. Reaction Gibbs free energy (eV) of each elementary step of NRR on $3N_2-Mo_1/pyrrolic-N_3-G$ via distal, alternating and hybrid mechanisms with two speculator dinitrogen molecules. Here the * represents the substrate of $2N_2-Mo_1/pyrrolic-N_3-G$.

Distal	*NNH	$*NNH_2$	*N	*NH	*NH ₂	$*NH_3$	$\rm NH_3$
ΔG (eV)	0.49	-0.55	0.41	-1.12	-0.20	-0.71	0.73
Alternating	*NNH	*NHNH	*NHNH ₂	$*NH_2NH_2$	$*NH_2NH_3$	*NH₃	$\rm NH_3$
ΔG (eV)	0.49	0.53	-0.58	-0.12	-1.10	-0.90	0.73
Hybrid	*NNH	$*NNH_2$	*NHNH ₂	$*NH_2NH_2$	$*NH_2NH_3$	$*NH_3$	$\rm NH_3$
ΔG (eV)	0.49	-0.55	0.50	-0.12	-1.10	-0.90	0.73

Fig. S5 The calculated Gibbs free energy diagram of the two paths (Distal and Alternating) of NRR for $3N_2$ - $Mo_1/pyrrolic-N_3-G$. The dotted blue line represents the hybrid path, here the * represents the substrate of $2N_2$ - $Mo_1/pyrrolic-N_3-G$.

Table S8. Reaction Gibbs free energy (eV) of each elementary step of NRR on $3N_2-W_1/pyrrolic-N_3-G$ via distal, alternating and hybrid mechanisms with two speculator dinitrogen molecules. Here the * represents the substrate of $2N_2-W_1/pyrrolic-N_3-G$.

Distal	*NNH	*NNH ₂	*N	*NH	*NH ₂	$*NH_3$	NH ₃
ΔG (eV)	0.33	-0.68	0.33	-1.28	0.03	-0.39	0.70
Alternating	*NNH	*NHNH	*NHNH ₂	$*NH_2NH_2$	$*NH_2NH_3$	*NH₃	$\rm NH_3$
ΔG (eV)	0.33	0.61	-0.59	0.10	-1.50	-0.61	0.70
Hybrid	*NNH	$*NNH_2$	*NHNH ₂	$*NH_2NH_2$	$*NH_2NH_3$	$*NH_3$	$\rm NH_3$
ΔG (eV)	0.33	-0.68	0.70	0.10	-1.50	-0.61	0.70

Fig. S6 The calculated Gibbs free energy diagram of the two paths (Distal and Alternating) of NRR for $3N_2$ - W_1 /pyrrolic- N_3 -G. The dotted blue line represents the hybrid path, here the * represents the substrate of $2N_2$ - W_1 /pyrrolic- N_3 -G.

Table S9. Reaction Gibbs free energy (eV) of each elementary step of NRR on $3N_2$ -Re₁/pyrrolic-N₃-G via distal, alternating and hybrid mechanisms with two speculator dinitrogen molecules. Here the * represents the substrate of $2N_2$ -Re₁/pyrrolic-N₃-G.

Distal	*NNH	*NNH ₂	*N	*NH	*NH ₂	$*NH_3$	NH ₃
ΔG (eV)	0.51	0.37	-0.49	-0.03	-1.23	-0.51	0.42
Alternating	*NNH	*NHNH	*NHNH ₂	$*NH_2NH_2$	$*NH_2NH_3$	$*NH_3$	$\rm NH_3$
ΔG (eV)	0.51	0.81	-0.95	0.36	-1.32	-0.79	0.42
Hybrid	*NNH	*NNH ₂	*NHNH ₂	$*NH_2NH_2$	$*NH_2NH_3$	$*NH_3$	NH ₃
ΔG (eV)	0.51	0.37	-0.51	0.36	-1.32	-0.79	0.42

Fig. S7 The calculated Gibbs free energy diagram of the two paths (Distal and Alternating) of NRR for $3N_2$ -Re₁/pyrrolic-N₃-G. The dotted blue line represents the hybrid path, here the * represents the substrate of $2N_2$ -Re₁/pyrrolic-N₃-G.

Fig. S8 The optimized intermediate configurations of NHNH, NHNH₂, NH₂NH₂ (N₂H₄) and NH₂NH₃ adsorbed on 2N₂-Mo₁/pyrrolic-N₃-G (a), $2N_2$ -W₁/pyrrolic-N₃ –G (b) and $2N_2$ -Re₁/pyrrolic-N₃-G (c) with top and side view, where the * represents the substrate of $2N_2$ -M₁/pyrrolic-N₃-G.

Spin moments (µB)	metal	total	N-N	N-N	N-N
V ₁ /pyrrolic-N ₃ -G	2.10	2.79	-0.012/0.110	-0.012/0.111	-0.012/0.110
Cr ₁ /pyrrolic-N ₃ -G	2.18	2.55	-0.026/0.030	-0.026/0.029	none
Mn ₁ /pyrrolic-N ₃ -G	0.21	0.23	-0.005/0.001	-0.005/0.001	-0.005/0.001
Fe ₁ /pyrrolic-N ₃ -G	0.00	0.00	0.000/0.000	0.000/0.000	0.000/0.000
Nb ₁ /pyrrolic-N ₃ -G	1.26	2.64	-0.009/0.168	-0.009/0.168	-0.009/0.167
Mo ₁ /pyrrolic-N ₃ -G	1.08	1.81	-0.020/0.087	-0.020/0.087	-0.020/0.087
W ₁ /pyrrolic-N ₃ -G	0.96	1.90	-0.020/0.125	-0.020/0.125	-0.020/0.125
Re ₁ /pyrrolic-N ₃ -G	0.11	0.21	-0.003/0.013	-0.003/0.013	-0.003/0.013

Table S10. The calculated spin moments of $3N_2$ - M_1 /pyrrolic- N_3 -G. (M_1 =V, Cr, Mn, Fe, Nb, Mo, W and Re)

Table S11. Reaction Gibbs free energy (eV) of each elementary step of NRR on $3N_2$ - W_1 /pyridine- N_3 -G via distal, alternating and hybrid mechanisms with two speculator dinitrogen molecules. Here the * represents the substrate of $2N_2$ - W_1 /pyridine- N_3 -G.

Distal	*NNH	$*NNH_2$	*N	*NH	*NH ₂	$*NH_3$	$\rm NH_3$	*N ₂ -H
ΔG (eV)	0.34	-0.09	-0.45	-0.45	-0.22	-0.20	0.12	0.43
Alternating	*NNH	*NHNH	*NHNH ₂	$*NH_2NH_2$	$*NH_2NH_3$	$*NH_3$	$\rm NH_3$	
ΔG (eV)	0.34	0.99	-0.70	0.38	-1.71	-0.40	0.12	
Hybrid	*NNH	*NNH ₂	*NHNH ₂	$*NH_2NH_2$	$*NH_2NH_3$	*NH₃	$\rm NH_3$	ΔU
ΔG (eV)	0.34	-0.09	0.42	0.38	-1.71	-0.40	0.12	0.09 (V)

Fig. S9 The calculated Gibbs free energy diagram of the two paths (Distal and Alternating) of NRR for $3N_2$ - W_1 /pyridine- N_3 -G. The dotted blue line represents the hybrid path, here the * represents the substrate of $2N_2$ - W_1 /pyridine- N_3 -G.

Choose	Mo₁/pyr	rolic-N ₃ -G	i (ΔG, eV)	W₁/pyr	rolic-N₃-G	(ΔG <i>,</i> eV)	$Re_1/pyrrolic-N_3-G (\Delta G, eV)$			
species	PBE	PW91	RPBE	PBE	PW91	RPBE	PBE	PW91	RPBE	
*H	-0.07	-0.05	-0.05	-0.58	-0.67	-0.43	-0.94	-0.97	-0.84	
*2H	0.10	0.14	0.45	0.13	-0.09	-0.06	0.56	0.53	0.46	
*N _{2_end-on}	-0.45	-0.38	-0.41	-0.49	-0.63	-0.46	-0.71	-0.84	-0.78	
*N ₂ -H	0.22	0.24	0.43	-0.17	-0.27	-0.36	-0.51	-0.47	-0.47	
*2N ₂	-0.32	-0.27	-0.22	-0.25	-0.38	-0.53	-0.53	-0.67	-0.71	
*2N ₂ -H	0.57	0.61	0.50	0.22	0.12	0.05	0.12	0.07	0.01	
*3N ₂	-0.16	-0.11	-0.23	-0.17	-0.39	-0.49	-0.51	-0.69	-0.67	
*3N ₂ -H	0.68	0.66	0.47	0.57	0.51	0.34	0.97	0.92	0.60	
*2N ₂ -NNH	0.49	0.46	0.46	0.33	0.28	0.31	0.51	0.49	0.47	

Table S12. The calculated reaction free energy of key intermediates on $Mo_1(W_1, Re_1)/pyrrolic-N_3-G$ by using the functional methods of PW91 and RPBE as the benchmark compared with PBE.

Fig. S10 The calculated AIMD simulations to investigate the stability of $Mo_1/pyrrolic-N_3-G$ (a), $W_1/pyrrolic-N_3-G$ (b) and $Re_1/pyrrolic-N_3-G$ (c) at 400 K by seven sets of snapshots for 6 ps.

Fig. S11 (a) The relationship between the dipole moments of one adsorbed N₂ and $\Delta G'_{*NNH}$, ΔG_{*NNH} . (b) The relationship between the dipole moments of one of the multi-adsorbed N₂ and the corresponding ΔG_{*NNH} , where the $\Delta G'_{*NNH}$ represents the free energy of *N₂ hydrogenation to *NNH and the ΔG_{*NNH} represents the free energy of *3N₂ hydrogenation to *2N₂-NNH.

Table S13. The atomic charges of supported metals (Q_{TM}) before reaction, the charges accumulated on *H (Q_H) after atomic H adsorbed on the metals with pre-covered multiple N₂, valence electrons (V_{TM}) , electronegativity (X), atomic radius (AR) and electron affinity (EA) of the transition metals.

Coordination	Metal	Q _{TM}	Q _H	V _{TM}	χ	AR	EA
Pyrrolic-N	V	0.5352	-0.0399	5	1.63	171	0.53
	Cr	0.7039	-0.0801	6	1.66	166	0.68
	Mn	0.3998	0.1115	7	1.55	161	0.00
	Fe	0.3293	-0.1171	8	1.83	156	0.16
	Nb	0.9214	-0.1058	5	1.59	198	0.90
	Мо	0.7446	-0.0421	6	2.16	190	0.75
	W	0.5962	-0.0400	6	2.36	193	0.82
	Re	0.4769	0.0124	7	2.93	188	0.16
Pyridine-N	V	0.5814	-0.2321	5	1.63	171	0.53
	Cr	0.6506	-0.0222	6	1.66	166	0.68
	Mn	0.3279	0.1292	7	1.55	161	0.00
	Fe	0.3383	-0.1324	8	1.83	156	0.16
	Nb	0.8784	-0.1446	5	1.59	198	0.90
	Мо	0.6544	-0.0766	6	2.16	190	0.75
	W	0.5141	-0.0692	6	2.36	193	0.82
	Re	0.3951	0.0023	7	2.93	188	0.16

	$\Delta_{G_{NNH}}DFT$	$\Delta_{G * NNH}$ SISSO	$\Delta_{U_{DFT}}$	$\Delta_{U_{SISSO}}$
V ₁ /pyrrolic-N ₃ -G	1.22	1.23	0.24	0.25
Cr ₁ /pyrrolic-N ₃ -G	1.13	0.93	0.01	0.03
Mn ₁ /pyrrolic-N ₃ -G	1.01	1.02	-0.27	-0.27
Fe ₁ /pyrrolic-N ₃ -G	1.76	1.73	-0.80	-0.84
Nb ₁ /pyrrolic-N ₃ -G	0.77	0.87	-0.08	-0.05
Mo ₁ /pyrrolic-N ₃ -G	0.49	0.41	0.19	0.23
W_1 /pyrrolic- N_3 -G	0.33	0.38	0.24	0.27
Re ₁ /pyrrolic-N ₃ -G	0.51	0.47	0.46	0.40
V ₁ /pyridine -N ₃ -G	0.89	0.94	-0.63	-0.68
Cr ₁ /pyridine -N ₃ -G	0.75	0.78	0.35	0.33
Mn ₁ /pyridine -N ₃ -G	1.75	1.78	-0.33	-0.35
Fe ₁ /pyridine -N ₃ -G	1.46	1.51	-1.31	-1.24
Nb ₁ /pyridine -N ₃ -G	0.43	0.53	-0.26	-0.30
Mo ₁ /pyridine -N ₃ -G	0.50	0.55	-0.01	-0.05
W_1 /pyridine - N_3 -G	0.34	0.29	0.09	0.09
$Re_1/pyridine -N_3-G$	1.38	1.31	0.39	0.43

Table S14. The calculated $\Delta_{G_{*NNH}}$ DFT, Δ_U DFT and predicted $\Delta_{G_{*NNH}}$ SISSO, Δ_U SISSO of V₁(Cr₁, Mn₁, Fe₁, Nb₁, Mo₁, W₁, Re₁)/pyrrolic-N₃-G and V₁(Cr₁, Mn₁, Fe₁, Nb₁, Mo₁, W₁, Re₁)/pyridine-N₃-G. ($\Delta_U = \Delta_{G_{*NNH}} - \Delta_{G_{*NNH}}$)

$\textbf{Table S15.} \ \text{The calculated } {}^{\Delta}\text{G}_{*_{NNH}} \text{DFT}, {}^{\Delta}\text{U} \text{DFT} \ \text{and predicted } {}^{\Delta}\text{G}_{*_{NNH}} \text{SISSO}, {}^{\Delta}\text{U} \text{SISSO on Nb}_{1}/\text{gt-C}_{3}\text{N}_{4}.$

	$\Delta_{G_{*NNH}}$ _DFT	$\Delta_{\text{G*NNH}}SISSO$	Δ_{U_DFT}	$\Delta_{U_{sisso}}$
Nb ₁ /gt-C ₃ N ₄	0.51	0.40	-0.09	-0.24