Supplementary Information

Polyoxometalate-modified reduced graphene oxide foam as monolith reactor for efficient flow catalysis of epoxide ringopening reactions

Xiaoting Jing, Zhen Li, Weijie Geng, Yingnan Chi,* Hongjin Lv,* Changwen Hu

Figure S1. The (a) digital photograph and (b) SEM image of $PW_{12}@rGO$ monolith.

Figure S2. Powder XRD patterns of rGO, POMs, and POM@rGO composites.

Figure S3. EDS spectra of PW₁₂@rGO.

Figure S4. Pore size distributions of (a) rGO and (b) PW_{12} @rGO by BJH method desorption branch.

Figure S5. FT-IR spectra of PMo₁₂@rGO and SiW₁₂@rGO.

Figure S6. NH₃-TPD for PW₁₂@rGO.

Figure S7. Potentiometric titration curves of n-butylamine in acetonitrile for different PW_{12} @rGO composites.

Figure S8. (a) Liquid-phase UV-vis spectra from leaching test of $PW_{12}@rGO$ immersed in methanol for 72 h. (b) FT-IR spectra of $PW_{12}@rGO$ before and after the leaching test.

Figure S9. FT-IR spectra of recycled and fresh $PW_{12}@rGO$ in batch reaction.

Figure S10. PW_{12} @rGO catalyzed epoxide ring-opening reaction in a continuous flow mode in the first 5 h.

Figure S11. FT-IR spectra of PW_{12} @rGO before and after the continuous flow catalysis.

Figure S12. FT-IR spectra of fresh PW_{12} @rGO, product 2a, and PW_{12} @rGO after 38 hours' reaction.

Sample	E _i (mV)	Acid amount (mmol n-butylamine g ⁻¹)			
rGO	59	0.25			
2.3wt% PW ₁₂ @rGO	499	1.48			
3.6wt% PW ₁₂ @rGO	551	1.96			
4.7wt% PW ₁₂ @rGO	566	2.47			

Table S1. Surface acidities of PW_{12} (arGO determined by potentiometric titration with n-butylamine.

Catalyst	mole% catalyst versus styrene oxide	Temp. (°C)	Time (h)	Conv (%)	TOF (h ⁻¹)	Ref.
MIL-101(HPW)	0.7	40	0.33	99.8	98.5	1
CuO / SiO ₂	0.5	60	8.5	97	21.9	2
PANF _{DTA} @Fe(III)	5	RT	1	>99	-	3
MIL-101-NH ₂ -PC- Ru(III)	0.1	RT	30	100	2325	4
Co-POM@MIL-101	0.1	RT	0.5	100	1504	5
PW ₁₂ @rGO	0.066	RT	0.17	99	8932	This work

Table S2. Comparison of heterogeneous catalysts for methanolysis of epoxide ringopening reactions.

References

- 1. L. H. Wee, F. Bonino, C. Lamberti, S. Bordiga and J. A. Martens, Green Chem., 2014, 16, 1351-1357.
- 2. F. Zaccheria, F. Santoro, R. Psaro and N. Ravasio, Green Chem., 2011, 13, 545.
- 3. X.-L. Shi, B. Sun, Q. Hu, Y. Chen and P. Duan, Green Chem., 2019, 21, 3573-3582.
- 4. A. K. Jafari, R. Kardanpour, S. Tangestaninejad, V. Mirkhani, M. Moghadam, I. Mohammadpoor-Baltork and F. Zadehahmadi, *J. Iran. Chem. Soc.*, 2018, **15**, 997-1006.
- A. Marandi, S. Tangestaninejad, M. Moghadam, V. Mirkhani, A. Mechler, I. Mohammadpoor-Baltork and F. Zadehahmadi, *Appl. Organometal. Chem.*, 2017, 32. e4065.