Efficient Nitric Oxide Reduction to Ammonia on Metal-Free Electrocatalyst

Qian Wu, Hao Wang, Shiying Shen, Baibiao Huang, Ying Dai*, Yandong Ma*

School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Str. 27, Jinan 250100, China

*Email: <u>daiy60@sina.com</u> (Y.D.); <u>yandong.ma@sdu.edu.cn</u> (Y.M.)

Computational methods

HER mechanism

$$H^{+} + e^{-} \rightarrow 1/2 H_{2} (g)$$

The Gibbs free energy of hydrogen adsorption $({}^{\Delta G}_{H*})^1$ under standard condition can be obtained by $\Delta G_{H*} = \Delta E_{H*} + \Delta E_{ZPE} - T\Delta S_H$

where ΔE_{H} is the hydrogen adsorption energy, ΔE_{ZPE} and $T\Delta S_{H}$ are the zero-point energy difference and entropy difference between adsorbed H^{*} atom and gas-phase H₂, respectively. In detail, ΔE_{H} , ΔE_{ZPE} and ΔS_{H} are given by

$$\Delta E_{H} = E_{H^{*}} - E^{*} - \frac{1}{2}E_{H_{2}}$$
$$\Delta E_{ZPE} = E_{ZPE}^{H^{*}} - \frac{1}{2}E_{ZPE}^{H_{2}}$$

$$\Delta S_H = S_{H^*} - \frac{1}{2}S_{H_2}$$

where ${}^{E}_{H}{}^{*}$, E^{*} , and ${}^{E}_{H}{}^{2}$ are the energies of catalyst with one adsorbed H^{*}, the free electrocatalyst, and gas-phase H₂, respectively. ${}^{E}_{ZPE}{}^{H}{}^{*}$ and ${}^{E}_{ZPE}{}^{H2}$ are the zero-point energies of adsorbed H^{*} without the contribution of catalyst and gas-phase H₂, respectively. ${}^{S}_{H}{}^{*}$ and ${}^{S}_{H}{}^{2}$ represent the entropies of adsorbed H^{*} atom and gas-phase H₂ at standard condition, respectively. The entropy is given by²

$$S(T) = \sum_{i=1}^{3N} \left[-R \ln \left(1 - e^{-\frac{hv_i}{k_B T}} \right) + \frac{N_A hv_i e^{-hv_i/k_B T}}{T - e^{-hv_i/k_B T}} \right]$$

where R stands for the universal gas constant, $k_{\rm B}$ is the Boltzmann constant, h is Plank's constant, $N_{\rm A}$ is Avogadro's number, $v_{\rm i}$ represents the frequency and N is the number of adsorbed atoms.

NORR mechanism

The Gibbs free energy of each elemental step (ΔG) of the NORR is adopted following the works of Nørskov et al^{3,4}.

$$\Delta G = \Delta E + \Delta E_{ZPE} - T\Delta S + \Delta G_{U}$$

where ΔE is the changed energy, ΔE_{ZPE} and ΔS are the change of zero point vibrational energy and the change of entropy, respectively, which can be obtained by the vibrational frequency of the optimized structures. T is the temperature and set to 298.15 K. The $\Delta G_U = -eU$, where e and U are the transferred charge and the electrode potential, respectively.

Microkinetic modeling

The reaction rate constant k is calculated by the Arrhenius-type based equation⁵

$$k = \frac{k_b T}{h} e^{\frac{-\Delta G_{TS}}{k_b T}}$$

where k_b is the Boltzmann constant, h represents the Planck constant and T is the temperature in kelvin. ΔG_{TS} is the Gibbs free energy difference between the initial state and transition state and can be calculated by CI-NEB method.

Table S1. Charge transfers (ΔQ) between NO and P for NO adsorbed 1P@C₂N and 2P@C₂N.

	$1P@C_2N$ (end-on)	$2P@C_2N$ (end-on)	$2P@C_2N$ (side-on)
$\Delta Q(e)$	0.23	1.44	1.80

Table S2. Elementary reactions for all the considered mechanisms for NORR to NH ₃ synt	thesis.

End-on adsorption		Side-on adsorption	
Reaction	Reaction Steps	Reaction	Reaction Steps
Pathway		Pathway	
N-distal	$NO(g) \rightarrow *NO \text{ (end-on)}$	O-first	$NO(g) \rightarrow *NO \text{ (side-on)}$
	*NO + H ⁺ + $e^- \rightarrow$ *HNO		$*NO + H^+ + e^- \rightarrow *NOH$
	*HNO + H ⁺ + $e^- \rightarrow *H_2NO$		*NOH + H ⁺ + $e^- \rightarrow *N + H_2O$
	$*H_2NO + H^+ + e^- \rightarrow *H_2NOH$		$*N + H^+ + e^- \rightarrow *NH$
	$*H_2NOH + H^+ + e^- \rightarrow *NH_2 + H_2O$		$*NH + H^+ + e^- \rightarrow *NH_2$
	$*NH_2 + H^+ + e^- \rightarrow NH_3(g)$		$*NH_2 + H^+ + e^- \rightarrow NH_3(g)$
N-	$NO(g) \rightarrow *NO \text{ (end-on)}$	O-	$NO(g) \rightarrow *NO \text{ (side-on)}$
alternating	*NO + H ⁺ + $e^- \rightarrow$ *HNO	enzymatic	$*NO + H^+ + e^- \rightarrow *NOH$
	*HNO + H ⁺ + $e^- \rightarrow$ *HNOH		*NOH + H ⁺ + $e^- \rightarrow$ *HNOH

	*HNOH + H ⁺ + e ⁻ \rightarrow *H ₂ NOH		*HNOH + H ⁺ + e ⁻ \rightarrow *NH + H ₂ O
	$*H_2NOH + H^+ + e^- \rightarrow *NH_2 + H_2O$		$*NH + H^+ + e^- \rightarrow *NH_2$
	$*NH_2 + H^+ + e^- \rightarrow NH_3(g)$		$*NH_2 + H^+ + e^- \rightarrow NH_3(g)$
0-	$NO(g) \rightarrow *NO \text{ (end-on)}$	N-	$NO(g) \rightarrow *NO \text{ (side-on)}$
alternating	$*NO + H^+ + e^- \rightarrow *NOH$	enzymatic	$*NO + H^+ + e^- \rightarrow *NOH$
	*NOH + H ⁺ + $e^- \rightarrow$ *HNOH		*NOH + H ⁺ + $e^- \rightarrow$ *HNOH
	*HNOH + H ⁺ + $e^- \rightarrow *NH + H_2O$		*HNOH + H ⁺ + e ⁻ \rightarrow *H ₂ NOH
	$*NH + H^+ + e^- \rightarrow *NH_2$		$*H_2NOH + H^+ + e^- \rightarrow *NH_2 + H_2O$
	$*NH_2 + H^+ + e^- \rightarrow NH_3(g)$		$*NH_2 + H^+ + e^- \rightarrow NH_3(g)$
O-distal	$NO(g) \rightarrow *NO \text{ (end-on)}$	N-first	$NO(g) \rightarrow *NO \text{ (side-on)}$
	$*NO + H^+ + e^- \rightarrow *NOH$		$*NO + H^+ + e^- \rightarrow *NOH$
	$*NOH + H^+ + e^- \rightarrow *N + H_2O$		*NOH + H ⁺ + $e^- \rightarrow *H_2NO$
	$*N + H^+ + e^- \rightarrow *NH$		$*H_2NO + H^+ + e^- \rightarrow *O$
	$*NH + H^+ + e^- \rightarrow *NH_2$		$*O + H^+ + e^- \rightarrow *OH$
	*NH ₂ + H ⁺ + e ⁻ \rightarrow NH ₃ (g)		$*OH+H^++e^- \rightarrow H_2O$
	1	I	1

Table S3. Computed total energies (E_{tot}), zero-point energies (E_{ZPE}) and entropy (TS) of intermediates for NORR on NO adsorbed 1P@C₂N with end-on configuration.

	E _{tot} (eV)	E _{ZPE} (eV)	TS (eV)	G (eV)
*NO	646.55	0.15	0.22	646.62
*NOH	640.46	0.49	0.15	650.12
*HNO	650.77	0.47	0.18	650.48
*HNOH	655.14	0.81	0.16	654.49
*H ₂ NO	654.50	0.81	0.17	653.86
*H ₂ NOH	658.47	1.09	0.31	657.69
*N	640.45	0.07	0.12	640.50
*NH	645.47	0.37	0.08	645.18
*NH ₂	650.22	0.69	0.10	649.63
NH ₃	653.60	0.96	0.27	652.91

	E _{tot} (eV)	E _{ZPE} (eV)	TS (eV)	G (eV)
*NO (end-on)	651.64	0.18	0.11	651.57
*NOH	655.98	0.50	0.10	655.58
*HNO	655.26	0.48	0.16	654.93
*N	646.88	0.11	0.02	646.79
*NH	650.90	0.40	0.05	650.55
*NH ₂	654.94	0.68	0.11	654.37
NH ₃	658.53	0.96	0.25	657.82

Table S4. Computed total energies (E_{tot}), zero-point energies (E_{ZPE}) and entropy (TS) of intermediates for NORR on NO adsorbed $2P@C_2N$ with end-on configuration.

Table S5. Computed total energies (E_{tot}), zero-point energies (E_{ZPE}) and entropy (TS) of intermediates for NORR on NO adsorbed 2P@C₂N with side-on configuration.

	E _{tot} (eV)	E _{ZPE} (eV)	TS (eV)	G (eV)
*NO (side-on)	651.81	0.18	0.09	651.72
*NOH	655.21	0.47	0.16	654.90
*HNO	656.23	0.51	0.09	655.84
*N	646.89	0.11	0.02	646.80
*HNOH	659.74	0.80	0.16	659.10
*H ₂ NO	660.16	0.81	0.20	659.55
*H ₂ NOH	665.92	1.07	0.17	665.02
*NH	650.90	0.40	0.05	650.55
*NH ₂	654.73	0.68	0.13	654.18
NH ₃	658.53	0.96	0.25	657.82
*O	645.83	0.09	0.05	645.79
*OH	649.90	0.36	0.08	649.62
H_2O	653.15	0.61	0.29	652.83

Figure S1. Possible doping sites of (a) single and (c) double P atoms on C_2N . Optimized structures of (b) single and (d) double P atoms doped C_2N , the corresponding adsorption energies are included.

Figure S2. Crystal structures of NO adsorbed (a) $1P@C_2N$ and (b) $2P@C_2N$ with end-on and sideon configurations, the corresponding adsorption energies (E_{ad}) are included.

Figure S3. Optimized intermediates and calculated Gibbs free energy diagrams of NORR for NH₃ synthesis through (a) N-distal/alternating and (b) O-distal/alternating reaction pathways on $2P@C_2N$ at U = 0 V. (c) Optimized intermediates and calculated Gibbs free energy diagrams of NORR for N₂O synthesis on $2P@C_2N$ at U = 0 V.

Figure S4. Optimized intermediates and calculated Gibbs free energy diagrams of NORR for NH_3 synthesis through (a) O-first/enzymatic, (b) N-first/enzymatic and (c) Mixed-I/II/III reaction pathways on $2P@C_2N$ at U = 0 V.

Figure S5. Band structures of intermediates for NORR on 2P@C₂N through O-distal pathway.

Figure S6. (a) Schematic illustration of the possible reaction pathways of NORR for N_2 synthesis. (b) Possible configurations and the corresponding adsorption energies for the intermediates. The dotted box marks the most stable adsorption configuration in each reaction step.

Figure S7. Gibbs free energy diagrams for HER on possible adsorption sites of (a) $1P@C_2N$ and (b) $2P@C_2N$. Inserts illustrate the possible adsorption sites of H atom on $1P@C_2N$ and $2P@C_2N$.

Figure S8. Coverage for surface species, i.e., *NO, *NOH, *N, *NH and *NH₂ on 2P@C₂N various with pressure (1–100 bar) and temperature (300–1000 K). H⁺:NO ratio is fixed at 10.

Figure S9. (a) Decomposition mechanism of C_2N substrate. (b) Variations of temperature and energy against the time for AIMD simulations of $2P@C_2N$, insert are top and side views of the snapshot of initial and final structures. The simulation is run under 500 K for 10 ps with a time step of 2 fs.

References

- 1. Tsai, C., Abild-Pedersen, F. & Nørskov, J. K. Nano Lett. 14, 1381–1387 (2014).
- 2. Zhu, Y. A., Chen, D. Zhou, X. G. & Yuan, W. K. Catal. Today 148, 260–267 (2009).
- 3. Nørskov, J. K. et al. J. Phys. Chem. B 108, 17886-17892 (2004).
- Peterson, A. A. Abild-Pedersen, F. Studt, F. Rossmeisl, J. & Nørskov, J. K. *Energy Environ. Sci.* 3, 1311–1315 (2010).
- 5. Lynggaard, H. Andreasen, A. Stegelmann, C. & Stoltze, P. Prog. Surf. Sci. 77, 71-137 (2004).