Supporting Information

Thermally Robust and Strongly Oxidizing Surface of WO₃

Hydrate Nanowires for Electrical Aldehyde Sensing with Long-

Term Stability

Guozhu Zhang, ^{1,2} Takuro Hosomi, ^{1,3} Wataru Mizukami, ^{3,4,5} Jiangyang Liu, ^{1,2} Kazuki

Nagashima,^{1,3} Tsunaki Takahashi,^{1,3} Masaki Kanai,^{1,2} Takeharu Sugiyama,⁶ Takao

Yasui,^{3,7} Yuriko Aoki,² Yoshinobu Baba,⁷ Johnny C Ho,^{2,8} and Takeshi Yanagida^{1,2*}

¹ Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan

² Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan

³ JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

⁴ Center for Quantum Information and Quantum Biology, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 560-8531, Japan

⁵ Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.

⁶ Research Center for Synchrotron Light Applications, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan

⁷ Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

⁸ Department of Materials Science and Engineering, State Key Laboratory of Terahertz and Millimeter Waves, and Centre for Functional Photonics, City University of Hong Kong, Kowloon 999077, Hong Kong SAR

*Corresponding Author: Takeshi Yanagida (yanagida@g.ecc.u-tokyo.ac.jp)

Figure S1. SEM image of (a) *as-grown* and (b) H₂SO₄-surface treated WO₃ hydrate nanowire. (c) XRD pattern of *as-grown* WO₃ hydrate nanowire.

Figure S2. (a) and (b) Dynamic resistance response of As-grown and H_2SO_4 -surface treated WO₃ nanowire sensor devices to various concentration (from 6.7 ppb to 2.67 ppm) of nonanal at 200 °C. (c) Sensing response extracted from (a) and (b). (d) Fitting of 1/*S* (reciprocal of sensor response) vs. 1/*C* (reciprocal of nonanal concentration) for H_2SO_4 -surface treated WO₃ nanowire sensor devices.

The linear fitting of 1/S vs. 1/C has shown that the surface coverage of adsorbed molecules follows Langmuir isotherm. This suggests that the conductance change of the sensor device is related to the surface occupancy of the nonanal molecules binding on WO₃ nanowire surface, and the effect of electrode-nanowire contact is tiny. ¹⁻³

Figure S3. (a) – (f) Dynamic resistance response of *as-grown* and H_2SO_4 -surface treated WO₃ nanowire sensor devices working at different temperatures (25 – 250 °C) to 2.67 ppm nonanal. (b) Sensing response and (j) recovery time extracted from (a) to (f).

Sensor type	Material	Sensitivity (R _{air/N2} /R _{gas})	Recovery time	Operation temperature	Ref.
	Pt, Pd, Au/SnO ₂	~5 (55 ppb)	102 s	250 °C	4
	Pt, Pd, Au/SnO ₂ nanoparticles/nanosheet	~3 (55 ppb)	102 s	300 °C	5
	Pt, Pd, Au/SnO ₂ nanoparticles/nanosheet	~10-20 (55 ppb)	several to tens of minutes	250 °C	6
Metal oxide semiconductor	SnO ₂ nanosheet	~1.38 (100 ppb)	-	250 °C	7
sensor	WO ₃ nanowires textile	2.96 (2.7ppm)	66 s	RT	8
	Single WO ₃ nanowire	3.80 (27ppb)	252 s	200 °C	9
	Single WO ₃ nanowire	58 (6.67ppb)	48.4 s	200 °C	This work
	(Acid surface treatment)	10 ⁴ -10 ⁵ (2.7ppm)	>200 s	200 °C	
Chemiresistive sensor	Molecularly functionalized gold nanoparticles	190ppb	_	RT	10
	Polymer and carbon black	3.42 ppm	_	Unknown	11
	Molecularly functionalized gold nanoparticles	50 ppb	-	Unknown	12
Field effect transistor	DNA-decorated carbon nanotubes	0.1% of saturated vapor	_	RT	13
QCM	Molecularly imprinted TiO ₂	Several ppm	>1800 s	RT	14

Table S1. Summary of nonanal sensing performance in previous studies and thisstudy.

Figure S4. (a)-(c) Dynamic resistance response of H_2SO_4 -surface treated WO₃ nanowire sensor device to various volatile molecules (nonanal (2.67 ppm), ethanol (~11.8 ppm), acetone (~48.5 ppm), isopropanol (~8.7 ppm)). (d) Sensitivity of H_2SO_4 -surface treated WO₃ nanowire sensor device to various volatile molecules that extracted from (a)-(c). Inset shows the magnified data for ethanol, acetone and isopropanol. The sensing measurements are performed at 200 °C with the readout voltage of 1 V under N₂ flow in air.

Figure S5. (a) – (d) Dynamic resistance response of different time (1 - 8 h) treated WO₃ nanowire sensor devices to 2.67 ppm nonanal at 200 °C.

Figure S6. The temperature program for desorbed gas analysis by GC-MS: (a) Inlet temperature; (b) Column temperature.

The inlet temperature and column temperature were controlled with the program shown in Figure S5. The inlet temperature programs were sequentially executed for the condition of 25 °C, 50 °C, 75 °C, 100 °C, 125 °C, 150 °C, 175 °C, 200 °C, 225 °C, 250 °C, 300 °C, 350 °C and 400. The same column temperature program (Figure S5b) was used for each inlet-temperature condition.

Figure S7 The MS fragment pattern of the desorbed molecules from the nonanal-adsorbed WO_3 nanowire (*as-grown* and H₂SO₄-surface treated) at (a) retention time: 19.8 min and (b) retention time: 31.1 min. The library MS pattern of (c) nonanal and (d) nonanoic acid.

Figure S8. The MS fragment pattern of the desorbed molecules from the nonanal-adsorbed WO₃ nanowire (*as-grown*) at (a) retention time: 25.0 min and (b) retention time: 30.8 min above 200°C heating. The library MS pattern of (c) 1-Hexadecene and (d) 9-Heptadecanone.

Figure S9. (a) Nonanal and (b) nonanoic acid concentration calibration by GC-MS.

Computational analyses of molecular vibrational infrared spectra

We simulated the infrared spectra of nonanal adsorptions on the W⁶⁺ site using density functional theory (DFT). A cluster model was used to model the hexagonal WO₃ (100) surface. The cluster model for the W⁶⁺ site model consisted of a single tungsten atom and five oxygen atoms. Each oxygen atoms were passivated by a hydrogen atom. Such a capping hydrogen atom was positioned 0.96 Å along each a chemical bond between each oxygen atom and the nearest tungsten atom which was not included in the cluster model. We fixed the atomic configurations of these two cluster models during the geometry optimizations. The vibrational harmonic frequency calculations were performed not in the whole systems but in these partially optimized systems. We employed four different functionals (ω B97XD, APFD, B3LYP, B3LYP-D3) with the def2-SVP basis sets. The Becke and Johnson's damping function was used with B3LYP-D3. All the DFT calculations were performed by the Gaussian program package Revision A 03.

Figure S9 shows the obtained infrared spectrum, where the vibrational frequencies are scaled by 0.97 in order to consider the anharmonic effects effectively.

The characteristic frequency of C=O stretching (str.) at the W⁶⁺ site was computed to be 1687.7, 1682.2, 1657.1, and 1658 cm⁻¹ with ω B97XD, APFD, B3LYP, and B3LYP-D3, respectively. The small difference between the B3LYP-D3 and B3LYP functionals shows the dispersion force is not crucial to explain the interactions between nonanal's C=O and the W⁶⁺ site. On the basis of the harmonic frequency calculations, we assigned the experimentally observed peak at 1668 cm⁻¹ to C=O str. on the W⁶⁺ site.

Figure S10. Simulated infrared spectra of nonanal adsorbed on the W⁶⁺ site. The computational level is ω B97XD/def2-SVP. The scaling factor 0.97 was employed.

Figure S11. (a) and (b) are time-dependent FTIR spectra during the diffusion process of nonanal molecules adsorbed on *as-grown* WO₃ hydrate nanowires and H_2SO_4 -surface treated WO₃ hydrate nanowires surface. (Measurement temperature, 25°C)

Figure S12. XRD patterns of *as-grown* and H_2SO_4 -surface treated WO₃ hydrate nanowire samples.

Figure S13. The refined crystal structure of hexagonal tungsten hydrates with (a) *P6/mmm* (asgrown nanowire) and (b) *P6₃/mcm* (H₂SO₄-surface treated nanowire) space group, viewed along *a*, *b* and *c* (O₃ oxygen is positioned in the center of the dodecagon aligned with the tungsten, while O₄ oxygen offsets from the tungsten in the *c* axis slightly towards the O₂ oxygen. The red sectors in water "dots" represent the probability of water's presence at the corresponding sites.

Figure S14. The structure percentage of hexagonal WO₃ hydrate nanowire that varied with the H_2SO_4 -surface treatment time. These data are calculated from the Rietveld refinement of X-ray diffraction (XRD) patterns.

Table S2 Results of the refinement data of *as-grown* WO₃ hydrate nanowire in the Space Group P6/mmm

Space Group		Atom	X	у	Z	Occupancy	Site	Symmetry
P6/mmm (100%)	1	W ₁	0.50000	0.00000	0.00000	1.00000	3f	mmm
	2	O ₁	0.50000	0.00000	0.50000	1.00000	61	mm2
	3	O ₂	0.20929	0.41865	0.00000	1.00000	3g	mmm
	4	O ₃	0.00000	0.00000	0.00000	0.51840	1a	6/mmm
	5	O ₄	0.09350	0.09350	0.31256	0.25144	12n	m

Table S3 Results of the refinement data of H₂SO₄-surface treated (4h) WO₃ hydrate nanowire

Space Group		Atom	Х	У	Z	Occupancy	Site	Symmetry
P6/mmm (79.6%)	1	W_1	0.50000	0.00000	0.00000	1.00000	3f	mmm
	2	O ₁	0.50000	0.00000	0.50000	1.00000	61	mm2
	3	O ₂	0.20929	0.41865	0.00000	1.00000	3g	mmm
	4	O ₃	0.00000	0.00000	0.00000	0.51840	1a	6/mmm
	5	O_4	0.09350	0.09350	0.31256	0.25144	12n	m
P6 ₃ /mcm (20.4%)	1	W_1	0.00000	0.47200	0.250000	1.00000	3f	mmm
	2	O ₁	0.18300	0.37500	0.75000	1.00000	61	mm2
	3	O ₂	0.00000	0.44500	0.01600	0.50000	3g	mmm
	4	O ₃	0.00000	0.00000	0.00000	0.59856	1a	6/mmm
	5	O ₄	0.09350	0.09350	0.31256	-0.30000	12n	m

Figure S15. (a) SEM image and (b) XRD patterns of *as-grown* WO₃ hydrate nanowire after thermal annealing treatment (400°C) for 1h.

Figure S16. (a) and (b) are dynamic resistance response of the 400 °C annealed *as-grown* and H_2SO_4 -surface treated WO₃ hydrate nanowire sensor devices to 2.67 ppm of nonanal under alternating flow of pure N₂ and nonanal bubbling gas at 200 °C. (c) Recovery time and sensing response of 400 °C annealing treated *as-grown* WO₃ hydrate and H_2SO_4 -surface treated WO₃ hydrate nanowire devices at 200 °C.

Figure S17. XPS W 4f spectra of as-grown WO₃ hydrate nanowire, H₂SO₄-surface treated (4 h) WO₃ nanowire and thermal annealing treated (400°C air, 1 h) WO₃ hydrate nanowire.

Figure S18. (a) Fourier transformed k^3 -weighted $\chi(k)$ -function of the EXAFS spectra of standard W, WO₂ and WO₃ powder samples. (a) Fourier transformed k^3 -weighted $\chi(k)$ -function of the EXAFS spectra of as-grown and H₂SO₄-surface treated WO₃ hydrate nanowire samples.

Sample	Path	^a C.N.	${}^{b}R\left(\mathrm{\AA}\right)$	$^{c}\sigma^{2}\times10^{3}$ (Å ²)	$^{d} \Delta E_{0} (\mathrm{eV})$	R factor
W std	W-W	8*	2.74±0.01	2.6±1.7	12.0±1.1	0.001
	W-W	6*	3.15±0.01	3.1±0.2	11.0±2.0	0.001
As-grown WO ₃ NW	W-O ₁	3.96±0.34	1.77±0.01	4.3±1.2	5.6±2.0	0.007
^e TA_WO ₃ NW	W-O ₁	4.01±0.57	1.76±0.01	4.0±1.6	5.6±2.5	0.009
^f S_WO ₃ NW (1h)	W-O ₁	3.42±0.26	1.76±0.02	3.4±1.8	4.9±2.8	0.015
S_WO ₃ NW (2h)	W-O ₁	3.45±0.26	1.76±0.02	3.6±1.9	4.8±2.8	0.009
S_WO ₃ NW (4h)	W-O ₁	3.48±0.29	1.76±0.02	3.6±1.9	5.0±2.8	0.008
S_WO ₃ NW (8h)	W-O ₁	3.42±0.34	1.76±0.02	3.5±2.0	4.8±3.0	0.010

Table S4. EXAFS fitting parameters at the W L-edge various samples $(S_0^2=0.67)$

^{*a*}C.N.: coordination numbers; ^{*b*}*R*: bond distance; ^{*c*} σ^2 : Debye-Waller factors; ^{*d*} ΔE_0 : the inner potential correction; ^{*a*}TA: Thermal annealing treatment (Air, 400°C, 1h); ^{*f*}S: H₂SO₄-surface treatment. *R* factor: goodness of fit. * the experimental EXAFS fit of standard W powder by fixing C.N. as the known crystallographic value.

The obtained XAFS data was processed in Athena (version 0.9.25) for background, pre-edge line and post-edge line calibrations. Then Fourier transformed fitting was carried out in Artemis (version 0.9.25). The k³ weighting, k-range of 3 - 15 Å⁻¹ and R range of 1 - 1.72 Å for 1 shell were used for the fitting. The model of bulk W and WO₃ were used to calculate the simulated scattering paths. The four parameters, coordination number, bond length, Debye-Waller factor and E_0 shift (CN, R, σ^2 , ΔE_0) were fitted without anyone was fixed, constrained, or correlated.

Figure S19. Retention time dependence of FT-IR spectra of H₂SO₄ surface treated WO₃ hydrate nanowire catalysis (without thermal annealing treatment).

Figure S20. Annealing time dependence of FT-IR spectra of H_2SO_4 surface treated WO₃ hydrate nanowire catalysis after thermal annealing at (a) 200°C, (b) 300°C, (c) 325°C, (d) 350°C, (e) 375°C and (f) 400°C.

Figure S21. Long-term stability of H₂SO₄ surface treated WO₃ hydrate nanowire sensor device (working at 200°C, nonanal, 2.67ppm).

References

- Zhang, D. et al. Detection of NO₂ down to ppb levels using individual and multiple In₂O₃ nanowire devices. *Nano Lett.* 2004, 4, 1919–1924.
- Abbas, A. N. et al. Patterning, characterization and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography. *ACS Nano* 2014, 8, 1538–1546.
- 3. Liu, B. et al. High-performance chemical sensing using schottky-contacted chemical Vapor deposition grown monolayer MoS₂ transistors. *ACS Nano* **2014**, 8, 5304–5314.
- Itoh, T.; Miwa, T.; Tsuruta, A.; Akamatsu, T.; Izu, N.; Shin, W.; Park, J.; Hida, T.; Eda, T.; Setoguchi, Y. Development of an Exhaled Breath Monitoring System with Semiconductive Gas Sensors, a Gas Condenser Unit, and Gas Chromatograph Columns. *Sensors* 2016, *16*, 1891
- Itoh, T.; Nakashima, T.; Akamatsu, T.; Izu, N.; Shin, W. Nonanal gas sensing properties of platinum, palladium, and gold-loaded tin oxide VOCs sensors. *Sens. Actuators, B* 2013, 187, 135–141
- Masuda, Y.; Itoh, T.; Shin, W.; Kato, K. SnO₂ Nanosheet/Nanoparticle Detector for the Sensing of 1-Nonanal Gas Produced by Lung Cancer. *Sci. Rep.* 2015, *5*, 1012
- Masuda, Y.; Kato, K.; Kida, M.; Otsuka, J. Selective nonanal molecular recognition with SnO₂ nanosheets for lung cancer sensor. *Int. J. Appl. Ceram. Technol.* 2019, *16*, 1807– 1811,
- Zhang, G.; Wang, C.; Mizukami, W.; Hosomi, T.; Nagashima, K.; Yoshida, H.; Nakamura, K.; Takahashi, T.; Kanai, M.; Yasui, T.; Aoki, Y.; Baba, Y.; Yanagida, T. Monovalent sulfur oxoanions enable millimeter-long single-crystalline *h*-WO₃ nanowire synthesis. *Nanoscale* 2020, *12*, 9058–9066
- Nekita, S., Nagashima, K., Zhang, G., Wang, Q., Kanai, M., Takahashi, T., ... & Yanagida, T. (2020). Face-Selective Crystal Growth of Hydrothermal Tungsten Oxide Nanowires for Sensing Volatile Molecules. *ACS Applied Nano Materials*, 3(10), 10252-10260.
- Jin, H.; Huynh, T.-P.; Haick, H. Self-Healable Sensors Based Nanoparticles for Detecting Physiological Markers via Skin and Breath: Toward Disease Prevention via Wearable Devices. *Nano Lett.* 2016, *16*, 4194–4202
- Huynh, T.-P.; Khatib, M.; Srour, R.; Plotkin, M.; Wu, W.; Vishinkin, R.; Nayek, N.; Jin, H.; Gazit, O. M.; Haick, H. Composites of Polymer and Carbon Nanostructures for Self-Healing Chemical Sensors. *Adv. Mater. Technol.* 2016, *1*, 1600187

- Kahn, N.; Lavie, O.; Paz, M.; Segav, Y.; Haick, H. Dynamic Nanoparticle-Based Flexible Sensors: Diagnosis of Ovarian Carcinoma from Exhaled Breath. *Nano Lett.* 2015, 15, 7023–7028
- Khamis, S. M.; Jones, R. A.; Johnson, A. T. C.; Preti, G.; Kwak, J.; Gelperin, A. DNAdecorated carbon nanotube-based FETs as ultrasensitive chemical sensors: Discrimination of homologues, structural isomers, and optical isomers. *AIP Adv.* 2012, *2*, 022110
- Liu, C.; Wyszynski, B.; Yatabe, R.; Hayashi, K.; Toko, K. Molecularly Imprinted Sol-Gel-Based QCM Sensor Arrays for the Detection and Recognition of Volatile Aldehydes. *Sensors* 2017, 17, 382.