Ni-based bimetallic nano-catalysts anchored on BaZr_{0.4}Ce_{0.4}Y_{0.1}Yb_{0.1}O₃ for

internal steam reforming of methane in a low-temperature proton-conducting

ceramic fuel cell

Kyungpyo Hong ^a, Stephanie Nadya Sutanto ^a, JeongA Lee ^a, Jongsup Hong ^{a,*}

^a School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea

Key Words: bimetallic alloy catalyst; steam reforming of methane; proton-conducting ceramic fuel cell; hydrogen yield; carbon resistance.

^{*} Corresponding author. Tel.: +82 2 2123 4465; Fax: +82 2 362 2736 *Email address*: jongsup.hong@yonsei.ac.kr (Jongsup Hong)

Fig. S1 Carbon formation ternary diagram with S/C ratio points.

(b)

Fig. S2 Reactant gas composition in equilibrium by test types (a) temperature; (b) S/C ratio;

(a)

Fig. S3 Detailed X-ray diffraction patterns for alloy formation of (a) 6Ni2Co; (b) 6Ni2Cu; (c) 6Ni2Rh in comparison with the monometallic (8Ni and 8M, M: Co, Cu, Rh) catalysts.

Fig. S4 Detailed TEM and EDS mapping images for (a) 8Ni; (b) 6Ni2Co; (c) 6Ni2Cu; (d) 6Ni2Rh.

Fig. S5 Detailed temperature-programmed reduction peaks of (a) 6Ni2Co; (b) 6Ni2Cu; (c) 6Ni2Rh in comparison with the monometallic (8Ni and 8M, M: Co, Cu, Rh) catalysts.

Fig. S6 TEM and EDS mapping images for (a) 8Ni; (b) 6Ni2Co; (c) 6Ni2Rh after long-term stability tests.