Electronic Supplementary Information

$Co_3O_4@PEI/Ti_3C_2T_x$ MXene nanocomposites for highly sensitive NO_x gas sensor with low detection limit

Baihe Sun ‡^a, He Lv‡^a, Zhuo Liu^a, Jue Wang^a, Xue Bai^a, Yang Zhang^a, Junkun Chen^a, Kan Kan^{*b}, and Keying Shi^{*a}

^a Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education. School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, P. R. China. E-mail: shikeying2008@163.com ^b Heilongjiang Academy of Sciences, Institute of Advanced Technology, Harbin 150020, P. R. China. E-mail: kankan.has@foxmail.com

‡ These authors contributed equally to this work.

present work.							
Sensor material	Operating temperature	Gas	Response/ Gas concentration	Response time	Recovery time	Detection limit	Ref.
Delaminated	DT	H ₂ O	26.1/	-	-	-	21
Ti ₃ C ₂ T _x MXene	κı		80±5%				
Metallic	DT	ethanol	1.7/	-	-	100 ppb	22
$Ti_3C_2T_xMXene$	NI NI		100 ppm				
	RT	NH_3	3.1%/	33 s	277 s	-	23
11027113021x			10 ppm				
ΡΔΝΙ/Τί-C-Τ	RT	ethanol	41.1%/	0.4 s	0.5 s	-	24
			200 ppm				
MXene@Pd CNC film	RT	H_2	23±4%/4%	32±7 s	-	-	25
	300 °C	acetone	11.6/	5.6 s	6 s	170 ppb	26
W18049/113C21x			20 ppm	(170 ppb)	(170 ppb)		
TiO ₂ /Ti ₂ C ₂ Myone	рт	NO_2	16.02%/	_	-	125 nnh	28
			5 ppm	-	-	120 hhn	20
3D Ti ₃ C ₂ T _x /ZnO	RT	NO ₂	41.93%/	34 s	103 s	-	29
spheres			100 ppm				
Alkalized Ti ₂ C ₂ T.	RT	$\rm NH_3$	28.87%/	_	-	-	35
/			100 ppm				
3D Mxene	RT	ethanol	4.4%/	Less than	Less than	50 ppb	44
framework			5 ppm	12 s 12s	12s		
CuO/Ti ₃ C ₂ T _v	250 °C	toluene	11.4/	270 s	10 s	_	S1
			50 ppm				-
MXene/SnO ₂	RT	NH_3	40%/	36 s	44 s	-	S2
		5	50 ppm				
PSS/MXene	RT	NH_3	36.6%/	116 s	40 s	-	S 3
composites			100 ppm				
single-layer Ti ₃ C ₂ -	RT	NH₃	6.13%/	-	-	10 ppm	S4
MXene			500 ppm			20.4	
	RT	NO _x	27.9/100 ppm	2 s	73 s	SUPPD	
CoPM-24						(experiment)	This work
						(theory)	
						(theory)	

 Table S1
 Comparison of the gas sensing characteristics of MXene based materials reported in literature and in

Fig. S1 AFM images and height profiles of $Ti_3C_2T_x$ MXene nanosheets.

Fig. S2 TEM images (a) and EDS elemental mapping analysis (b-c, e-f) and EDS image (d) of Ti₃C₂T_x MXene.

Fig. S3 SEM images (a) and SAED (b) of CoPM-24.

Fig. S4 TEM and HRTEM images of the CoPM-18 (a-c) and CoPM-30 (d-f).

Fig. S5 XPS survey spectra of $Ti_3C_2T_x$ MXene, CoPM-24 and CoPM-NO_x.

Fig. S6 Dynamic response-recovery curve of (a) CoPM-18 and (b) CoPM-30 sensors.

Fig. S7 the response times (a) and the recovery times (b) of CoPM-18, CoPM-24 and CoPM-30 sensors.

Fig. S8 The gas sensitive line chart (a), the transient dynamical responses to $0.03 \sim 100$ ppm NO_x (b), the stability to 100 ppm NO_x gases detecting day for 8 weeks (c) of the CoPM-24 sensor.

Fig. S9 (a) The curve with detailed data obtained by polynomial fitting the first 30 response points in the response-time baseline of the CoPM-24 gas sensor before the injection of NO_x. The response values before and after fitting are recorded as Si and S, respectively, (b) the curve with detailed data obtained by linear fitting the response points in the NO_x sensing measurement of Fig. 5d.

Calculation for limit of detection (LOD):

The theoretical LOD were calculated using the variation in the gas response at base line using the root mean square deviation (rms noise). For polynomial fitting, we took 30 experimental data point from Fig. 5a. According to the formula (1) below, and Si and S obtained by the polynomial fit method in Fig. S9a, Vx^2 can be calculated as follow. [s5, s6]

$$Vx^2 = \Sigma(Si - S)^2$$
 (1) [55, 56]
 $Vx^2 = 0.00004496$

In terms of the root mean square (rms), i.e., formula (2), rms noise can be calculated as follows.

$$rms = \sqrt{Vx^2/n}$$
 (n = 20) (2) [s5, s6]

rms = 0.00122

Finally, according to the formula (3) and the value of slope (0.28929) obtained from Fig. S9b, the theoretic Limit of detection (LOD) can be calculated:

LOD = 3 * (rms/slope) (3) [S5, S6]

$$LOD = 0.0127 \ ppm \ or \ 12.7 \ ppb$$

Therefore, the theoretical detection limit of 12.7 ppb to NO_x at RT.

Fig. S10 XRD patterns of Ti_3AIC_2 (MAX) and $Ti_3C_2T_x$ (MXene).

Fig. S11 XPS spectra of CoPM-24 in NO_x adsorption (a) C1s XPS spectra; (b) Ti2p XPS spectra

Sensors		CoPM-1	8	(CoPM-24		(CoPM-30	
NO ₂ (ppm)	R	$\mathbf{T}_{\mathbf{s}}$	Tr	R	Ts	Tr	R	$\mathbf{T}_{\mathbf{s}}$	Tr
100	23.35	2.13	102.93	27.92	1.60	73.07	23.06	2.13	90.67
50	18.75	2.13	92.27	20.68	1.60	81.07	18.12	2.13	89.07
30	3.25	3.20	86.93	11.15	1.60	78.93	10.23	2.67	81.60
10	2.29	5.33	82.13	6.76	2.13	74.67	5.26	2.67	78.40
5	1.97	4.27	75.73	2.87	2.67	61.33	2.20	2.67	67.20
3	1.48	4.27	65.60	1.74	3.20	59.20	1.51	4.27	60.27
1	1.21	4.27	64.53	1.33	3.20	38.40	1.30	4.80	42.67
0.5	1.16	5.87	49.07	1.19	3.73	29.87	1.15	6.40	30.40
0.3	1.09	6.40	40.53	1.12	3.73	17.07			
0.1				1.09	4.27	13.33			
0.05				1.04	4.80	7.47			
0.03				1.03	4.80	5.87			

Table S2Response, response time and recovery time of CoPM-18, CoPM-24 and CoPM-30 sensors.

*R: Response T_s: Response time T_r: Recovery time

Table S3	Peaks positions (eV) of the XPS analysis	results to Pure MXene,	CoPM-24 and CoPM-NO,
----------	---------------------	-----------------------	------------------------	----------------------

	Peak position (eV)					
Elements	MXene	CoPM-24	CoPM-NO _x			
Ti2p	455.2, 456.6, 459.3,	455.6, 456.9, 460.1,	456.0, 457.4, 460.4,			
	461.6 and 464.7	461.8 and 464.8	462.2 and 465.2			
C1s	282.0, 283.5, 286.5 and	282.4, 283.7, 285.8,	283.2, 284.6, 286.3			
	288.0	286.9 and 288.8	287.6 and 288.9			
O1s	530.3, 531.7 and 532.9	530.4, 532.0 and 534.9	532.0, 533.3 and 535.6			
Co2p		779.1, 781.8, 785.6,	779.8, 782.9, 786.6,			
	-	795.3, 800.1 and 803.4	795.8, 800.3 and 804.2			
N1s	-	398.5	399.4, 404.0 and 407.6			

References

S1. A. Hermawan, B. Zhang, A. Taufik, Y. ASakura, T. Hasegawa, J. Zhu, P. Shi and S. Yin, *ACS Appl. Nano Mater.*, 2020, 3, 4755–4766.

S2. T. He, W. Liu, T. Lv, M. Ma, Z. Liu, A Vasiliev and X. Li, Sens. Actuators, B, 329 (2021) 129275.

S3. L. Jin, C. Wu, K. Wei, L. He, H. Gao, H. Zhang, K Zhang, A. M. Asiri, K. A. Alamry, L. Yang and X. Chu, *ACS Appl. Nano Mater.*, 2020, 3, 12071–12079.

S4. M. Wu, M. He, Q. Hu, Q. Wu, G. Sun, L. Xie, Z. Zhang, Z. Zhu and A. Zhou, *ACS Sens.*, 2019, 4, 2763–2770.
S5. V. Dua, S. P. Surwade, S. Ammu, S. R. Agnihotra, S. Jain, K. E. Roberts, S. Park, R. S. Ruoff, and S. K. Manohar, *Angew. Chem.*, 2010, 122, 2200–2203.

S6. J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han and M. Meyyappan, Nano Lett., Vol. 3, No. 7, 2003.