Supporting Information

Performance improvement of MXene-based perovskite solar cells upon property transition from metallic to semiconductive by oxidation of $Ti_3C_2T_x$ in air

Lin Yang ^a, Dongxiao Kan ^a, Chunxiang Dall'Agnese ^a, Yohan Dall'Agnese ^b, Baoning Wang ^a, Ajay Kumar Jena ^c, Yingjin Wei ^a, Gang Chen ^a, Xiao-Feng Wang ^a, *, Yury Gogotsi ^d and Tsutomu Miyasaka ^c

^a Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, 2699 Qianjin Street, Changchun 130012, China

^b Institute for Materials Discovery, University College London, London WC1E 7JE, United Kingdom

^c Graduate School of Engineering, Toin University of Yokohama, 1614 Kurogane-cho, Aoba, Yokohama, Kanagawa 225-8503, Japan

^d A. J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States

Corresponding Authors

* Xiao-Feng Wang, *E-mail*: xf_wang@jlu.edu.cn

Figure S1. UV–vis absorption spectra of $Ti_3C_2T_x$, LO- $Ti_3C_2T_x$, HO- $Ti_3C_2T_x$ and HO- $Ti_3C_2T_x$ @ $Ti_3C_2T_x$.

Figure S2. Ti 2p core level XPS spectra of the films of TiO₂.

Figure S3. XPS spectra of the films of (a) $Ti_3C_2T_x$, (b) $LO-Ti_3C_2T_x$, (c) $HO-Ti_3C_2T_x$, (d) $HO-Ti_3C_2T_x$ (d) $HO-Ti_3C_2T_x$ (d) $Ti_3C_2T_x$ (f) $Ti_3C_2T_x$

Figure S4. Reverse scan of PSCs' J-V curves based on HO-Ti₃C₂T_x@Ti₃C₂T_x with different volume ratio (1:1, 5:1 and 10:1) as ETLs under AM 1.5 G simulated illumination.

Table S1. The photovoltaic performance parameters of PSCs with reverse scan based on HO-Ti₃C₂T_x@Ti₃C₂T_x with different volume ratio of 1:1, 5:1 and 10:1 as ETLs under AM 1.5 G simulated illumination.

ETL	V_{oc} (V)	J _{sc} (mA cm ⁻²)	FF (%)	PCE (%)
HO-Ti ₃ C ₂ T _x @Ti ₃ C ₂ T _x (1:1)	1.06	23.12	69	16.91
HO-Ti ₃ C ₂ T _x @Ti ₃ C ₂ T _x (5:1)	1.07	23.11	74	18.29
HO-Ti ₃ C ₂ T _x @Ti ₃ C ₂ T _x (10:1)	1.06	22.83	69	16.63

Figure S5. Photovoltaic parameter statistics of (a) V_{oc} , (b) J_{sc} , (c) FF and (d) PCE for the investigated PSCs. Parameters are extracted from the J-V curves acquired with reverse scan of 16 PSCs for each condition under AM 1.5 G simulated illumination.

Figure S6. Forward and reverse scans of J–V curves for the devices based on (a) LO-Ti₃C₂T_{*x*}, HO-Ti₃C₂T_{*x*}@Ti₃C₂T_{*x*} and (b) TiO₂, HO-Ti₃C₂T_{*x*}.

Figure S7. Steady-state power output and current density of devices based on (a) $Ti_3C_2T_x$, (b) LO- $Ti_3C_2T_x$, (c) HO- $Ti_3C_2T_x$, (d) HO- $Ti_3C_2T_x$ @ $Ti_3C_2T_x$ and (e) TiO_2 as ETLs, respectively.

Figure S8. Ultraviolet photoelectron spectra of (a) HO-Ti₃C₂T_x, (b) HO-Ti₃C₂T_x@Ti₃C₂T_x and (c) TiO₂ films spin-coated onto ITO substrates. The HOMO energy levels were determined by the intersection of baseline with the tangent line of the spectra, which is, HOMO = $-(\Phi + E_B)$ (eV).

Figure S9. PL and TRPL spectra (excitation at 403 nm) of $ITO/Ti_3C_2T_x/CH_3NH_3PbI_3$, ITO/LO-Ti_3C_2T_x/CH_3NH_3PbI_3, ITO/HO-Ti_3C_2T_x/CH_3NH_3PbI_3, ITO/HO-Ti_3C_2T_x/QTi_3C_2T_x/CH_3NH_3PbI_3 and ITO/TiO_2/CH_3NH_3PbI_3.

Figure S10. Typical *J*–*V* curves for the devices based on (a) $Ti_3C_2T_x$, (b) LO- $Ti_3C_2T_x$, (c) HO- $Ti_3C_2T_x$, (d) HO- $Ti_3C_2T_x$ @ $Ti_3C_2T_x$ and (e) TiO_2 as ETLs under dark, respectively.

The electron mobilities of ETLs were analyzed by the *J-V* curves with the electron-only structure of $ITO/SnO_2/ETL/BCP/Ag$ under dark, and were calculated with the following equation:

$$J = 9\varepsilon_0 \varepsilon_r \mu (V - V_{bi} - V_r)^2 / 8L^3$$

where μ is electron mobility (cm² V⁻¹ s⁻¹), *J* represents the current density (mA cm⁻²), ε_0 indicates the permittivity of free space (mA s V⁻¹ cm⁻¹), ε_r represents the dielectric constant of ETLs (assumed as 3), *V* is the applied voltage (V), V_r is the voltage drop (V) due to the series resistance and contact resistance across the electrodes, V_{bi} is the built-in voltage (V), V- V_{bi} - V_r is obtained through a slope in the double log plot equals to 2, and *L* is the thickness of ETLs film (cm).

Figure S11. Nyquist plots of the PSCs based on $Ti_3C_2T_x$, LO- $Ti_3C_2T_x$, HO- $Ti_3C_2T_x$, HO- $Ti_3C_2T_x$, HO- $Ti_3C_2T_x$, and TiO_2 as ETLs under one sun illumination, where the scattered points are experimental data and the solid lines are the fitted curves according to the equivalent circuit.

Table S2.	Fitting	parameters	for	EIS	data.
-----------	---------	------------	-----	-----	-------

ETL	$R_1(\Omega)$	$R_2(\Omega)$	C (F)
$Ti_3C_2T_x$	42.78	369.5	7.456E-9

$LO-Ti_3C_2T_x$	45.53	325.6	6.698 E-9
HO-Ti ₃ C ₂ T _{x}	51.96	417.5	7.429 E-9
HO-Ti ₃ C ₂ T _x (a) Ti ₃ C ₂ T _x	56.28	188.2	8.394 E-9
TiO ₂	59.73	422.1	6.921E-9

Figure S12. Stability results of PSCs based on $Ti_3C_2T_x$, LO- $Ti_3C_2T_x$, HO- $Ti_3C_2T_x$, HO- $Ti_3C_2T_x$, HO- $Ti_3C_2T_x$ and TiO_2 as ETLs in ambient air (relative humidity $\approx 20\%$) without encapsulation at 25 °C.