Supplementary Information

Band restructuring of ordered/disordered blue TiO₂ for visible photocatalyst

Simgeon Oh,^{‡ac} Ji-Hee Kim,^{‡*ac} Hee Min Hwang,^{ac} Doyoung Kim,^{ac} Joosung Kim,^{ac} G. Hwan Park,^{ab} Joon Soo Kim,^{ac} Young Hee Lee^{*ac} and Hyoyoung Lee^{*ab}

^aCenter for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 16419, Korea

^bDepartment of Chemistry, Sungkyunkwan University, Suwon 16419, Korea ^cDepartment of Energy Science, Sungkyunkwan University, Suwon 16419, Korea

[‡]These authors contribute equally to this work

*Corresponding authors

E-mail: kimj@skku.edu, leeyoung@skku.edu, hyoyoung@skku.edu

Fax: (+) 82-31-299-5934; Tel: (+) 82-31-299-4566

1. Phase-selective reduction in single-phase TiO₂

1.1 Crystalline structure

The phase-selectively reduced TiO_2 was carefully confirmed with single-phase TiO_2 . The TiO_2 reductions were conducted using different alkali metal-ethylenediamine solutions. Single-phase anatase and rutile TiO_2 was reduced by lithium-ethylenediamine (Li-EDA) and sodium-ethylenediamine (Na-EDA) solutions, respectively (referred to as Li-reduction or Na-reduction). Each TiO_2 phase was reduced for 1, 3, 5 and 7 days to investigate the band structure as a function of reduction time.

XRD and TEM analyses were carried out to investigate the crystallographic modification resulting from Li and Na reduction. Fig. S1 shows the X-ray diffraction diffractometer (XRD) spectra of 6 samples: pristine anatase and rutile phase TiO₂, Li-reduced anatase and rutile phase TiO₂, and Na-reduced anatase and rutile phase TiO₂, each reduced for 7 days. These spectra showed the different reduction tendencies of anatase and rutile TiO2 under our reduction reaction. In anatase TiO₂, the XRD peaks specific to anatase are unchanged with Li-reduction. However, these same peaks are barely evident when anatase is treated with Na-reduction. Meanwhile, rutile TiO₂ showed no XRD peak changes with Na-reduction, but the Li-reduced rutile sample showed decreased rutile peak intensities. Supplementary Table 1 shows the FWHM values of the (101) and (204) peaks in anatase TiO_2 and the (110) and (101) peaks in rutile TiO₂. High-resolution transmission electron microscopy (HRTEM) unveils ordered and disordered crystalline structures after Li- and Na-reduction, respectively (Fig. S2). These results imply that the TiO₂ disordering rates of Li- and Na-reduction are selectively effective for different TiO₂ crystalline phases. Thus, we denote Li-reduced TiO₂ as crystalline ordered anatase (A_o) and disordered rutile (R_d), and Na-reduced TiO₂ as crystalline disordered anatase (A_d) and ordered rutile (R_o) .

1.2. Energy band structure

The energy band restructuring of Li- and Na-reduced single-phase TiO₂ samples were investigated by diffuse reflectance spectroscopy (DRS) and X-ray photoelectron spectroscopy (XPS) with different reduction times to observe the energy band change with respect to reduction level. DRS provides light absorption information and a deduced Tauc plot, which are essential for energy band gap measurements (Fig. S3). These data show that the anatase and rutile TiO₂ mainly absorb in the UV range due to their large energy band gaps of 3.2 eV and 3.0 eV, respectively, which is in good agreement with previous reports. After TiO₂ reduction treatment, the Li-reduced A₀ and Na-reduced R₀ show slightly increased absorption, but there is almost no bandgap change, while Na-reduced A_d and Li-reduced A_d and Li-reduced R_d show an enormous absorption increase in the visible spectrum. Furthermore, Na-reduced A_d and Li-reduced R_d show an enormous analysis (Fig. S3). The measured energy band structures are summarized in Table S3, showing that our TiO₂ phase-selective reduction method successfully provides energy band restructuring.

2. Tables

Single-phase TiO ₂	A(101)	A(204)	R(110)	R(101)
Pristine	0.3587°	0.5708°	0.1466°	0.1569°
7-day Li-reduction	0.4705°	0.8648°	0.4792°	0.5046°
7-day Na-reduction	1.4358°	2.0774°	0.1682°	0.1755°

Table S1. Full-width-at-half-maximum values of 7-day Li- and Na-reduced single-phase TiO₂. Anatase (101), (204) and rutile (110), (101) peaks are measured from single-phase TiO₂ XRD spectra (Fig. S1).

Phase-mixed TiO ₂	A(101)	R(110)
Pristine	0.3755°	0.2576°
7-day Li-reduction	0.3726°	0.3921°
7-day Na-reduction	0.3942°	0.2450°

Table S2. Full-width-at-half-maximum variation of the XRD peaks of phase-selectivelydisordered anatase/rutile TiO_2 after Li- and Na-reduction.

\sum	Li-reduction (Single-phase TiO ₂)			Na-reduction (Single-phase TiO ₂)				
Anatase Reduction (ordered, A₀)		Rutile (disordered, R _d)		Anatase (disordered, A _d)		Rutile (ordered, R _o)		
time	VB (eV)	E _g (eV)	VB (eV)	E _g (eV)	VB (eV)	E _g (eV)	VB (eV)	E _g (eV)
0-day	2.11	3.18	2.00	3.01	2.11	3.18	2.00	3.01
1-day	2.09	3.2	2.00	2.98	2.09	3.15	2.02	3.00
3-day	2.09	3.19	1.85	2.96	1.94	3.09	1.96	3.00
5-day	2.11	3.17	1.78	2.93	1.85	2.91	2.01	2.98
7-day	2.05	3.16	1.72	2.88	1.87	2.73	2.00	2.98

Table S3. Measured valence band and energy band gap of single-phase TiO_2 with different Li- and Na-reduction times (Fig. S3).

	Phase reduction time					
	0-day (Pristine)	1-day	3-day	5-day	7-day	
R _s (Li-reduction)	26.54 Ω	25.37 Ω	25.25 Ω	24.66 Ω	25.72 Ω	
R _{ct} (Li-reduction)	55.16 kΩ	69.30 kΩ	73.49 kΩ	101.20 kΩ	158.10 kΩ	
R _s (Na-reduction)	26.54 Ω	25.27 Ω	24.55 Ω	24.90 Ω	27.10 Ω	
R _{ct} (Na-reduction)	55.16 kΩ	68.73 kΩ	140.50 kΩ	191.20 kΩ	181.17 kΩ	

Table S4. Summarized R_s and R_{ct} values of Li-reduced (A_o/R_d) and Na-reduced (A_d/R_o) phase-mixed TiO₂ from the electrochemical impedance spectroscopy results (Fig. S14).

Photocatalyst	Structure	Photocatalysis parameters	H ₂ generation rate	Reference	
3-day Li-reduced P25	Nanoparticles	No Pt loaded 3:1 H₂O/MeOH (1 sun irradiation)	0.74 mmol g ⁻¹ h ⁻¹	Our work	
3-day Li- reduced Pt-P25	Nanoparticles	0.04 wt.% Pt load 3:1 H ₂ O/MeOH (1 sun irradiation)	6.84 mmol g ⁻¹ h ⁻¹	Our work	
Pt-P25	Nanoparticles	0.46 wt.% Pt load 4:1 H ₂ O/MeOH (1 sun irradiation)	5.71 mmol g ⁻¹ h ⁻¹	Our work	
Hydrogenated Pt-P25	Core/shell	1.0 wt.% Pt load 4:1 H₂O/MeOH (1 sun irradiation)	3.94 mmol g ⁻¹ h ⁻¹	RSC Adv., 2014, 4, 1128–1132	
Pt-anatase TiO ₂	Core/shell	0.5 wt.% Pt load 4:1 H ₂ O/MeOH (1 sun irradiation)	7.40 mmol g ⁻¹ h ⁻¹	Energy Environ. Sci., 2014, 7, 967–972	
Pt-anatase TiO ₂	Nanowires	0.5 wt.% Pt load 10:1 H ₂ O/MeOH (UV irradiation)	4.30 mmol g ⁻¹ h ⁻¹	Catal Commun., 2008, 9, 1265-1271	
Anatase-rutile Pt-composite	Nanoparticles	0.4 wt.% Pt load 10:1 H ₂ O/MeOH (300W Xe lamp)	4.25 mmol g ⁻¹ h ⁻¹	J. Phys. Chem. C, 2010, 114, 2821–2829	

Table S5. Summary of various Pt-loaded TiO_2 photocatalysts used for the photocatalytic

hydrogen evolution reaction.

3. Figures

Fig. S1. XRD patterns of single-phase TiO_2 7-day Li- and Na-reduction, (a) anatase TiO_2 and (b) rutile TiO_2 .

Fig. S2. HRTEM images of single-phase TiO_2 . (a,d,g,j) without reduction, anatase phase (a) and rutile phase TiO_2 (g); corresponding electron-diffraction FFT pattern (d,j). (b,e,h,k) with the 7-day Li-reduction, anatase phase (b) and rutile phase TiO_2 (h); corresponding electron-diffraction FFT pattern (e,k). (c,f,i,l) with the 7-day Na-reduction, anatase phase (c) and rutile phase TiO_2 (i); corresponding electron-diffraction FFT pattern (f,l).

Fig. S3. Energy band structure survey with Li- and Na-reduced single-phase TiO_2 . (a,c) XPS valence band (XPS VB) edge spectra and Tauc plot of single-phase TiO_2 with Li-reduction for anatase phase TiO_2 and rutile phase TiO_2 . (b,d) XPS VB edge spectra of single-phase TiO_2 with Na-reduction for anatase phase TiO_2 and rutile phase TiO_2 . Inset: The DRS spectra.

Fig. S4. Digital photograph images of pristine P25, Li-reduced (A_o/R_d , upper line) and Nareduced (A_d/R_o , bottom line) phase-mixed TiO₂ with reduction time evolution. Both colors change from white to deep blue after reduction for 7 days.

Fig. S5. (a,c) XPS core-level spectra of single-phase TiO_2 with 7-day Li-reduction: Ti 2p core-level XPS peaks and O 1s core-level XPS peaks. (b,d) XPS core-level spectra of single-phase TiO_2 with 7-day Na-reduction: Ti 2p core-level XPS peaks and O 1s core-level XPS peaks.

Fig. S6. EPR spectra of (a) Li-reduced and (b) Na-reduced anatase/rutile phase-mixed TiO_2 for the relative oxygen vacancies.

Fig. S7. UPS valence band spectra of (a) Li-reduced rutile TiO_2 (R_d) and (b) Na-reduced anatase TiO_2 (A_d) with reduction time evolution. (c) Fermi level reference with Au film.

Fig. S8. (a) Tauc plots from UPS data, which are used to determine the direct bandgap via $\sim (\alpha hv)^{1/2}$, of ordered anatase and disordered rutile phase-mixed TiO₂ with Li-reduction (A_o/R_d), and (b) disordered anatase and ordered rutile phase-mixed TiO₂ with Na-reduction (A_d/R_o). Inset: The DRS spectra.

Fig. S9. AFM (left) and KPFM mapping (right) image of (a) pristine phase-mixed TiO_2 , (d) 7-day Li- and (g) Na-reduced TiO_2 . The line profile of (b, c) pristine phase-mixed TiO_2 , (e, f) 7-day Li- and (h, i) Na-reduced TiO_2 for the anatase-rutile and anatase-anatase phase junction interfaces.

Fig. S10. PL spectra of (a) Li-reduced TiO_2 and (b) Na-reduced TiO_2 with different reduction time evolution.

Fig. S11. FTIR spectra of phase-mixed TiO_2 with (a) Li-reduction (A_o/R_d) and (b) Nareduction (A_d/R_o).

Fig. S12. The UPS cut-off region results for workfunctions measurement of single-phase TiO₂ after (a,c) 7-day Li-reduction and (b,d) 7-day Na-reduction. (e) UPS result of Au reference.

Fig. S13. Summarized energy band diagram of 7-day ordered and disordered single-phase TiO_2 to compare the CB position of TiO_2 and reduction potential of hydrogen for p-HER.

Fig. S14. Electrochemical impedance spectroscopy (EIS) spectra of phase-mixed TiO_2 with (a) Li-reduction (A_o/R_d), and (b) Na-reduction (A_d/R_o). Inset: The equivalent circuit model. R_s and R_{ct} values are served in Table S4.

Fig. S15. p-HER results of pristine phase-mixed TiO₂ (P25) and phase-mixed TiO₂ with 3day Li-reduction (A_o/R_d), 2-day Na-reduction (A_d/R_o), and 3-day Li- and then Na-reduction treatment (A_d/R_d).

Fig. S16. N_2 adsorption–desorption isotherms of (a) Pristine P25 TiO₂, (b) Li-reduced TiO₂ and (c) Na-reduced TiO₂ as a function of the phase-selective TiO₂ reduction time.

Fig. S17. Calibration curves of the weight ratio of Pt on Pt-TiO₂ and Pt-rTiO₂ with different concentrations of Pt precursor solution employed for photodeposition.

Fig. S18. p-HER performance as a function of Pt precursor concentration (mM) in the photodeposition solution with (a) Pt co-catalyst deposited on pristine P25 (Pt-TiO₂), and (b) phase-mixed TiO₂ with 3-day Li-reduction (Pt-rTiO₂).