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Supporting Information 

Identification and quantification of liquid products  

NMR spectroscopy 

Liquid products formed during CO2 electrochemical reduction were analyzed with 1H-NMR. Aliquots were collected 

at regular intervals as mentioned in the manuscript and 2 μL DMSO (internal standard) and 200 μL D2O was added 

to 0.5 ml electrolyte. The NMR experiments were performed on a Bruker 400 MHz NMR spectrometer, using a 

presaturation sequence to suppress the water signal. NMR spectra of reaction mixture was measured before starting 

any electrochemical reaction to make sure that there was no impurity in the solution which can lead to false results. 

Table S1. Chemical shifts and assignments of peaks from different possible products observed in 1H-NMR spectra 

after CO2 reduction. 

 

                           Observed NMR Values                         Products Standard NMR 

Values47 

Chemical Shift 1H Splitting J coupling Probed Nucleus  Name Chemical Shift 

8.35   CHOO- Formate 8.35 

3.64 q 7.08 CH3CH2OH Ethanol 3.64 

1.8 s  CH3C(=O)O- Acetate 1.8 

1.20  t 7.16 CH3CH2OH Ethanol 1.20  

 

 

Quantification of the products 

Liquid products were quantified from NMR spectra by calibrating it with respect to the internal standard and 
quantifying the identified products.  

Gaseous products of CO2 reduction were collected and transferred to GC using gas-tight syringe. The GC was 
equipped with thermal conductivity detector (GC- TCD) and Molecular Sieve 5A capillary column. Helium (99.999%) 
was used as the carrier gas. The GC columns led directly to a TCD detector to quantify hydrogen and carbon 
monoxide. At ambient conditions, CO2 was continuously purged through a cathode compartment flow cell at a rate 
of 20 sccm while a constant potential was applied for designated time. The cell effluent was sampled using 100 µL 
syringe. 
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The Faradaic efficiency (FEs) was calculated by measuring the current and using mole percentages quantified through 
GC-TCD as well as NMR analysis as follows:  

Faradaic Efficiency (%) calculation of Products 

 

No. of moles of product = C 

Total current = I (A) 

No. of electrons(moles) required to form certain product = C x n  

N = No. of electrons required to obtain 1 molecule of product. 

Charge consumed in forming certain product Ce = C x F x n [F = Faraday constant, 96485 C mol-1] 

 

The number of electrons required to form a molecule of Ethanol, Acetate, Formate and H2 are 12, 8, 2 and 2, 
respectively. 

 

Total charge consumed can be determined using Faraday’s laws of electrolysis: CT = I × t , 

Faradaic efficiency of the product =  Ce/ CT × 100% 

 

Following worksheet shows typical calculation of Faradaic efficiency at specific potentials (-0.6 V and -0.9 V vs RHE) 

 

Calculation of the FE of products at -0.6 V vs RHE: 

current density mA/cm2 (1h)= 4 mA/cm2 

Surface Area of the electrode = 2 cm2 

Total current(A) = (current density x Surface Area of the electrode) /1000 = 0.008 A 

Total charge consumed CT = I × t = 0.008 x 3600 = 28.80 C 

Table S2: Calculated Faradaic Efficiency along with product concentration obtained at -0.6 V vs 
RHE. 

Products 
 

No. of moles of 
product(mol) 

n (number of 
electrons 
required to form 
specific product) 

Ce (Charge required to 
form certain product) (C) 

FE = Ce /CT*100 

Hydrogen 2.68E-07 2 0.51 0.18 

Ethanol 2.10433E-05 12 24.36 84.00 

Acetate 5.72789E-06 8 4.42 15.34 

Formate 7.55558E-07 2 0.14 0.48 

 

Calculation of the FE of products at -0.9V vs RHE: 



current density mA/cm2 (1h)= 5.5 mA/cm2 

Surface Area of the electrode = 2 cm2 

Total current(A) = (current density x Surface Area of the electrode) /1000 = 0.01086 A 

Total charge consumed CT = I × t = 0.01086 x 3600 = 39.10 C 

Table S3: Calculated Faradaic Efficiency along with product concentration obtained at -0.9 V vs 

RHE. 

Products 

 

No. of moles 

of 

product(mol) 

N(number of 

electrons 

required to 

form specific 

product) 

Ce (Charge required to 

form certain product) (C) 

FE = Ce /CT*100 

Hydrogen 1.28E-06 2 0.25 0.64 

Ethanol 2.14789E-05 12 24.86 63.58 

Acetate 5.3476E-06 8 4.12 10.53 

Formate 5.12389E-05 2 9.88 25.25 

 

H2 

O2 

N2 

Fig S1. Gas Chromatogram collected at -1.3 V vs RHE from the head-space gas. 



 

Table S4. Faradaic efficiency of the liquid and gas phase products estimated from NMR and 
GC-TCD respectively at different applied potential with Cu2Se 

Product Faradaic Efficiency (%) 

 -0.25 V - 0.6 V - 0.9 V - 1.3 V 

H2 0 0.17 0.63 1.12 

Formic Acid 0.4 0.50 25.26 94.2 

Acetic Acid 33 15.25 10.54 4.67 

Ethanol 66.6 84.06 63.55 0 
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Fig. S2. (a) 24 h of chronoamperometry study at applied potential = -0.9V vs RHE (b) Pxrd spectra of 

Cu2Se before and after 24 h of chronoamperometry (c) Cu 2p XPS signal before and after 
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Fig S3. Chronoamperometric stability study for Cu2Se nanocomposite under 

continuous CO2 purging for 12 h held at constant potential (-0.1 V vs RHE, -0.6 

V vs RHE, -0.9 V vs RHE)  
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Fig S4. Chronoamperometric stability study for Cu2Se nanocomposite under continuous CO2 purging for 100 h held 

at constant potential (-0.6 V vs RHE) 
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Computational Setup 

The fully periodic plane-wave density functional theory (DFT) calculations were carried out as 
implemented in Vienna Ab-initio Simulation Package (VASP)1 with the exchange-correlation 
functional Perdew−Burke−Ernzerhof (PBE)2 within the generalized gradient approximation 
(GGA)3 implemented with the Projector Augmented Wave function (PAW) method4 to investigate 
adsorption energy of CO molecules on the surface of catalyst materials. An energy cutoff limit of 
500 eV was applied with the convergence criteria for electronic self-consistent iterations set at 1.0 
× 10−6 eV, and the ionic relaxation was carried out by conjugate gradient algorithm until atomic 
forces of the system were smaller than 0.01eV without any constrains. The Methfessel−Paxton 
smearing with a value of smearing parameter σ of 0.2 eV was applied to the orbital occupation. 
The calculations employed 11x11x3 k-point Monkhorst−Pack5 mesh for Cu and other transition 
metals along with a 11x8x3 grid for Cu2Se (220) surface and 11x11x5 grid for Cu2Se (001) surface 
for sampling the Brillouin zone. For each species, surface models with a unit cells of 2x2x2 and 
2x3x3 with a vacuum region of 15 Å along z-direction were used. 

During the calculation of CO adsorption energy, first the free surfaces were relaxed to obtain the 
energy of the clean surface, Eclean, and then CO ions were placed on top of active sites of the 
catalyst at a distance of ~ 1.80 Å, which is very close to the equilibrium distance of CO on 
transition metal sites, and let the system to relax to calculate, Esys., the total formation energy of 
the system. The adsorption energy of CO, Ead, was calculated as Ead = Esys – Eclean – ECO, in which 
ECO is the energy of free CO. 
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