Electronic Supplementary Information (ESI)

High-temperature proton conductors based on the (110) layered perovskite BaNdScO₄

Masahiro Shiraiwa, Takafusa Kido, Kotaro Fujii, Masatomo Yashima* Department of Chemistry, School of Science, Tokyo Institute of Technology, 2–12–1–W4–17, O–okayama, Meguro–ku, Tokyo 152–8551, Japan

* Corresponding author

Figure S1. Crystal structures of (a) BaNdInO₄ (*Chem. Mater.*, 2014, **26**, 2488–2491) and (b) BaNdScO₄ (*Chem. Commun*, 2016, **52**, 10980–10983). Red sphere denotes an oxygen atom. (a) BaNdInO₄ with the monoclinic $P2_1/c$ BaNdInO₄-type structure. (b) BaNdScO₄ with the orthorhombic *Cmcm* BaNdInO₄-type structure.

(B) XRD patterns of BaNd_{1-x}A_xScO_{4-x/2}

Figure S2. Cu *K* α X-ray powder diffraction patterns of BaNd_{1-x}*A*_xScO_{4-x/2} at room temperature. (a) *x* = (i) 0.0, (ii) 0.05, (iii) 0.1, (iv) 0.2, (v) 0.3, (vi) 0.4 and (vii) 0.5 for *A* = Mg. (b) *x* = (i) 0.0, (ii) 0.05, (iii) 0.1, (iv) 0.2, (v) 0.3, (vi) 0.4 and (vii) 0.5 for *A* = Ca. (c) *x* = (i) 0.0, (ii) 0.05, (iii) 0.1 and (iv) 0.15 for *A* = Sr. (d) *x* = (i) 0.0, (ii) 0.03, (iii) 0.05, (iv) 0.1 and (v) 0.15 for *A* = Ba.

(C) Lattice parameters of BaNd_{1-x}Ca_xScO_{4-x/2}

Figure S3. Variation of lattice parameters (a) *a*, (b) *b* and (c) *c* and (d) lattice volume of orthorhombic *Cmcm* BaNd_{1-x}Ca_xScO_{4-x/2} with Ca content *x* (x = 0.0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5) at 23 °C.

Table S1. Lattice parameters and lattice volume of orthorhombic *Cmcm* phase in BaNd_{1-x}Ca_xScO_{4-x/2} powders (x = 0.0, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5) versus Ca content x at 23 °C. These parameters of BaNd_{1-x}Ca_xScO_{4-x/2} (x = 0.0, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5) were determined by the Le Bail analyses using the Cu *K* α X-ray powder diffraction data measured at 23 °C.

x	<i>a</i> (Å)	<i>b</i> (Å)	<i>c</i> (Å)	Lattice volume (Å ³)
0	4.0592(7)	17.524(3)	5.9791(5)	425.32(10)
0.05	4.0612(3)	17.5388(10)	5.9708(4)	425.29(4)
0.1	4.0616(5)	17.522(3)	5.9667(7)	424.63(10)
0.2	4.06274(15)	17.5177(7)	5.9574(2)	423.98(3)
0.3	4.0670(7)	17.474(4)	5.9584(7)	423.43(12)
0.4	4.06777(8)	17.452(3)	5.9520(6)	422.52(12)
0.5	4.06643(10)	17.429(5)	5.9526(8)	421.88(16)

Figure S4. UV–Vis diffuse reflectance spectra of (a) BaNdScO₄, (b) BaNd_{0.9}Ca_{0.1}ScO_{3.95} and (c) BaNd_{0.8}Ca_{0.2}ScO_{3.9}.

(E) Arrhenius plots of oxide-ion conductivities

Figure S5. Arrhenius plots of oxide-ion conductivities ${}^{\sigma_0 2^-}$ of BaNScO₄ (black), BaNd_{0.8}Ca_{0.2}ScO_{3.9} (red) and BaNdInO₄ (blue). The activation energies of ${}^{\sigma_0 2^-}$ of BaNdScO₄ were 0.92(12) eV in the temperature range of 600-800 °C and 1.04(5) eV above 800 °C. These values are higher than those of BaNd_{0.8}Ca_{0.2}ScO_{3.9} (0.25(2) eV in the temperature range of 600-800 °C and 0.51(8) eV above 800 °C) and seem to be higher than that of BaNdInO₄ in the temperature range of 700-1000 °C (0.89(4) eV) (*J. Electrochem. Soc.*, 2017, **164**, F1392-F1399). Higher activation energy for oxide-ion conductivity of BaNdScO₄ ($E_a = 1.04$ eV above 800°C) than that of BaNdInO₄ ($E_a = 0.89$ eV) is consistent with the higher bond-valence-based energy (BVE) barrier for oxide-ion migration of BaNdScO₄ (1.97 eV) than that of BaNdInO₄ 1.0666(2) Å (*Chem. Mater.*, 2014, **26**, 2488–2491).

Figure S6. Proton transport numbers of BaNdScO₄ (this work), BaNd_{0.8}Ca_{0.2}ScO_{3.9} (this work) and La_{0.9}Sr_{0.1}ScO_{3- δ} (*Solid State Ionics*, 2017, **306**, 126–136).

Table S2. Proton transport numbers of BaNdScO₄ (this work), BaNd_{0.8}Ca_{0.2}ScO_{3.9} (this work) and La_{0.9}Sr_{0.1}ScO_{3- δ} (*Solid State Ionics*, 2017, **306**, 126–136). The proton transport number of BaNdScO₄ is comparable with that of La_{0.9}Sr_{0.1}ScO_{3- δ} at 600 and 700 °C, while the proton transport number of BaNdScO₄ is higher than that of La_{0.9}Sr_{0.1}ScO_{3- δ} at 800 and 900 °C.

Composition	600 °C	700 °C	800 °C	900 °C	1000 °C
BaNdScO ₄	0.92	0.88	0.76	0.76	0.69
BaNd _{0.8} Ca _{0.2} ScO _{3.9}	0.53	0.62	0.61	0.61	0.51
$La_{0.9}Sr_{0.1}ScO_{3-\delta}$	0.96	0.85	0.63	0.36	_

Figure S7. (a) Thermogravimetric-mass spectroscopy (TG-MS) curves of $BaNd_{0.8}Ca_{0.2}ScO_{3.9}$ sample annealed in wet air [$BaNd_{0.8}Ca_{0.2}ScO_{3.934(2)}H_{0.067(3)}\cdot 0.283 H_2O$]. Black TG curve and ion currents of H_2O (red) and CO_2 (blue). (b) Water content *y* in $BaNd_{0.8}Ca_{0.2}ScO_{3.9}\cdot y H_2O$ obtained using the MS curve.

(H) Results of the structure refinements of BaNd_{0.8}Ca_{0.2}ScO_{3.9} sample annealed in wet air

Table S3. Results of the structure refinements of neutron powder diffraction (NPD) data of BaNd_{0.8}Ca_{0.2}ScO_{3.9} sample annealed in wet air [BaNd_{0.8}Ca_{0.2}ScO_{3.934(2)}H_{0.067(3)}·0.283 H₂O] based on eighteen structural models where the positions of H atom are different from each other. For the structure refinements based on the Models 2-18, the atomic coordinates of H atom were fixed. Model 1 gave the best results with lowest *R* factors. Reliability factors for the structural model without H atom were $R_{wp} = 0.0384$ and $R_F = 0.0264$.

	Atomi	c coordinates of	of H atom	Reliability factors				
Model No.	<i>x</i>	у	Z	$R_{ m wp}$	R_F	R _B		
1	0	0.1614(7)	0.8254(17)	0.0381	0.0262	0.0389		
2	0.165	0.14	0.615	0.0390	0.0267	0.0411		
3	0.88	0.21	0.605	0.0388	0.0266	0.0425		
4	0.17	0.14	0.46	0.0393	0.0271	0.0435		
5	0.17	0.23	0.46	0.0392	0.0267	0.0449		
6	0.17	0.2	-0.1	0.0389	0.0270	0.0421		
7	0	0.21	0.18	0.0387	0.0270	0.0394		
8	0	0.155	0.75	0.0381	0.0264	0.0392		
9	0	0.31	0.25	0.0382	0.0263	0.0400		
10	0	0.115	0.52	0.0392	0.0267	0.0438		
11	0	0.2	0.65	0.0386	0.0266	0.0414		
12	0.35	0.12	0.38	0.0389	0.0269	0.0397		
13	0.35	0.09	0.38	0.0393	0.0271	0.0413		
14	0.35	0.055	0.38	0.0387	0.0269	0.0386		
15	0.26	0.5	0.5	0.0390	0.0271	0.0416		
16	0.5	0.56	0.5	0.0387	0.0267	0.0425		
17	0.5	0.5	0.32	0.0386	0.0266	0.0411		
18	0.5	0.455	0.355	0.0383	0.0265	0.0372		

(I) Rietveld pattern of neutron powder diffraction data of BaNd_{0.8}Ca_{0.2}ScO_{3.9} sample annealed in wet air

Figure S8. Rietveld pattern of neutron powder diffraction data of $BaNd_{0.8}Ca_{0.2}ScO_{3.9}$ sample annealed in wet air [$BaNd_{0.8}Ca_{0.2}ScO_{3.934(2)}H_{0.067(3)}$] measured at 25 °C. The observed and calculated intensities and difference plot are shown by red + marks, green solid line, and blue solid line, respectively. Black and purple tick marks stand for the calculated Bragg peak positions of orthorhombic $BaNd_{0.8}Ca_{0.2}ScO_{3.934(2)}H_{0.067(3)}$ and cubic CaO, respectively.

(J) Structural models of $Ba_{20}Nd_{16}Ca_2Sc_{20}O_{80}H_8$ for DFT calculations

Position of	Structural	Position of	Emargy (aV)	Energy		
Ca atom*	models	H atom**	Energy (eV)Energy (meV / a)00 0 0 0 0 0 0 0 0 0 0 2.229383 15.269 2.926438 20.044 8.082557 55.359 4.192992 28.719 2.171961 14.876 10.606299 72.645 5.210950 35.691 2.517771 17.245 8.868790 60.745 5.454241 37.357 2.201178 15.076	(meV / atom)		
model A	A-1	near O3	0	0		
	A-2	near O2	6.872564	47.07236		
	A-3	near O1	2.229383	15.26975		
model B	B-1	near O3	2.926438	20.04410		
	В-2	near O2	8.082557	55.35998		
	В-3	near O1	4.192992	28.71912		
model C	C-1	near O3	2.171961	14.87645		
	C-2	Structural models Position of H atom** Ener A-1 near O3 A A-2 near O2 6.8 A-3 near O1 2.2 B-1 near O3 2.9 B-2 near O1 4.1 C-1 near O2 10.0 B-3 near O1 5.2 D-1 near O3 2.5 D-2 near O1 5.4 D-3 near O3 2.2 E-1 near O3 2.5 D-3 near O1 5.4 E-1 near O3 2.2 E-3 near O2 8.3 E-3 near O1 4.7	10.606299	72.64588		
	C-3	near O1	5.210950	35.69144		
m a dal D	D-1	near O3	2.517771	17.24501		
model D	D-2	near O2	8.868790	60.74514		
	D-3	near O1	5.454241	37.35782		
	E-1	near O3	2.201178	15.07656		
model E	E-2	near O2	8.348209	57.17951		
	Е-3	near O1	4.713434	32.28379		

Table S4. Energies of $Ba_{20}Nd_{16}Ca_2Sc_{20}O_{80}H_8$ for fifteen structural models, which were obtained by the DFT structural optimizations. Model A-1 is most stable.

* In the model A, all Ca atoms occupy the Nd sites. In the models B, C, D and E, all Ca atoms occupy the Ba sites, four Ba atoms are located at Nd sites and the oxygen vacancies exist at different positions depending on the model.

** See the Table 1 for the atom labels and positions of O1, O2 and O3 atoms.

Table S5. Optimized positional parameters of Ba₂₀Nd₁₆Ca₂Sc₂₀O₈₀H₈ for the most stable model A–1, which were obtained by the DFT structural optimization (space group *P*1). Optimized lattice parameters *a*, *b*, *c*, α , β and γ are 4.09358 Å, 17.84825 Å, 29.94585 Å, 89.64°, 90° and 90°, respectively. The optimized lattice parameters and average atomic coordinates agree well with experimental ones in Table 1.

atom coordinates	x	У	z		x	У	z		x	У	z		x	У	z
Ba	0	0.4097	0.053	Sc	0	0.0769	0.0483	01	0.5	0.4929	-0.001	03	0	0.19	0.5021
Ва	0	0.5609	0.1423	Sc	0	0.9123	0.1458	01	0.5	0.4926	0.9019	03	0	0.8187	0.4996
Ва	0.5	0.9181	0.0449	Sc	0.5	0.5707	0.0482	02	0	0.5832	0.049	03	0	0.829	0.3952
Ва	0.5	0.0731	0.1401	Sc	0.5	0.3946	0.1452	02	0	0.4172	0.1511	03	0	0.1848	0.4079
Ва	0	0.4253	0.2385	Sc	0	0.0776	0.2404	02	0.5	0.0793	0.0467	03	0.5	0.6847	0.4929
Ва	0	0.5663	0.3501	Sc	0	0.9341	0.3461	02	0.5	0.9068	0.1498	03	0.5	0.3287	0.5052
Ba	0.5	0.916	0.2415	Sc	0.5	0.5797	0.2556	02	0	0.5973	0.2623	03	0.5	0.3327	0.5968
Ва	0.5	0.0823	0.3557	Sc	0.5	0.4152	0.35	02	0	0.409	0.3556	03	0.5	0.6904	0.3987
Ba	0	0.4272	0.4501	Sc	0	0.0838	0.4524	02	0.5	0.0953	0.2413	03	0	0.1846	0.6904
Ва	0	0.5817	0.5445	Sc	0	0.9152	0.5509	02	0.5	0.9281	0.3501	03	0	0.8394	0.6923
Ва	0.5	0.9273	0.4507	Sc	0.5	0.584	0.4478	02	0	0.5931	0.4472	03	0	0.8076	0.5904
Ва	0.5	0.0664	0.5505	Sc	0.5	0.4334	0.5544	02	0	0.4274	0.5505	03	0	0.1865	0.5962
Ва	0	0.4163	0.6587	Sc	0	0.0786	0.6451	02	0.5	0.0929	0.4535	03	0.5	0.6889	0.6974
Ва	0	0.5737	0.7595	Sc	0	0.8953	0.7548	02	0.5	0.9088	0.5452	03	0.5	0.3156	0.7023
Ba	0.5	0.9244	0.6618	Sc	0.5	0.5773	0.6594	02	0	0.5947	0.6585	03	0.5	0.3108	0.7946
Ва	0.5	0.0607	0.7572	Sc	0.5	0.4124	0.7546	02	0	0.4066	0.7504	03	0.5	0.6836	0.6046
Ва	0	0.4183	0.8553	Sc	0	0.0711	0.8512	02	0.5	0.0962	0.639	03	0	0.1765	0.896
Ва	0	0.5653	0.9507	Sc	0	0.9093	0.949	02	0.5	0.9172	0.7493	03	0	0.8043	0.9064
Ва	0.5	0.9101	0.8472	Sc	0.5	0.5772	0.8511	02	0	0.5796	0.8529	03	0	0.8275	0.8069
Ва	0.5	0.0651	0.9487	Sc	0.5	0.4093	0.9513	02	0	0.4024	0.9506	O3	0	0.1775	0.8015
Nd	0	0.7167	0.0498	01	0	-0.0076	-0.0021	02	0.5	0.0834	0.851	03	0.5	0.681	0.8902
Nd	0.5	0.2191	0.0542	01	0	0.9895	0.097	02	0.5	0.902	0.9493	03	0.5	0.3128	0.9021
Nd	0.5	0.774	0.1487	01	0.5	0.5229	0.2007	03	0	0.1579	0.1019	03	0.5	0.305	0.994
Nd	0	0.2781	0.3541	01	0.5	0.4937	0.0986	03	0	0.8108	0.1058	03	0.5	0.6582	0.7972
Nd	0.5	0.2334	0.2445	01	0	-0.0074	0.1996	03	0	0.8129	-0.0017	Н	0.5	0.6393	0.1913
Nd	0.5	0.797	0.3505	01	0	0.0263	0.3032	03	0	0.181	0.0094	Н	0.5	0.6698	0.3354
Nd	0	0.7281	0.4457	01	0.5	0.5	0.4005	03	0.5	0.6782	0.0984	Н	0.5	0.6956	0.7305
Nd	0	0.2963	0.5501	01	0.5	0.4971	0.3033	03	0.5	0.3264	0.0938	н	0.5	0.6309	0.5941
Nd	0.5	0.2279	0.4552	01	0	0.0083	0.4009	03	0.5	0.3405	0.2085	Н	0	0.1397	0.7097
Nd	0.5	0.7782	0.5464	01	0	-0.0002	0.5001	03	0.5	0.676	0.0039	Н	0	0.169	0.5647
Nd	0	0.7329	0.6563	01	0.5	0.5251	0.5971	03	0	0.1838	0.2961	Н	0	0.1981	0.1704
Nd	0	0.274	0.7512	01	0.5	0.5081	0.4995	03	0	0.8343	0.3036	н	0	0.1303	0.3056
Nd	0	0.7195	0.846	01	0	-0.0031	0.5973	03	0	0.8165	0.1981				
Nd	0	0.2676	0.9516	01	0	0.0197	0.6998	03	0	0.1907	0.2033				
Nd	0.5	0.2168	0.8506	01	0.5	0.4896	0.8029	03	0.5	0.6882	0.304				
Nd	0.5	0.7674	0.9482	01	0.5	0.4918	0.7003	03	0.5	0.3078	0.3103				
Ca	0	0.7271	0.2526	01	0	-0.0056	0.8013	03	0.5	0.3186	0.401				
Са	0.5	0.2263	0.648	01	0	-0.0071	0.9009	03	0.5	0.6851	0.2098				

(K) Proton diffusion paths and their energy profiles in BaNdScO₄H

Figure S9. Proton migration pathways and their energy profiles in BaNdScO₄H. (a) Path a3 along *a* axis, H6ⁱ(O2ⁱ)–H6ⁱⁱ(O2ⁱ)–H7ⁱⁱ(O1^{iv})–H7ⁱⁱ(O1^{iv})–H6ⁱⁱⁱ(O2ⁱⁱ)–H6^{iv}(O2ⁱⁱ) and (b) Path a2 along *a* axis, H8ⁱ(O3^{viii})–H8ⁱⁱ(O3^{viii})–H8ⁱⁱⁱ(O3^{ix})–H8^{iv}(O3^{ix}). See the details in Table 2.

(L) Crystal structures, bond-valence-based energy landscapes and oxide-ion diffusion pathways in BaNd_{0.8}Ca_{0.2}ScO_{3.9}

Figure S10. (a) Refined crystal structure and (b,c) bond valence-based energy (BVE) landscapes for an oxide-ion with yellow isosurfaces at 2.00 eV of $BaNd_{0.8}Ca_{0.2}ScO_{3.934(2)}H_{0.067(3)}$ at 25 °C, which were depicted along (a,b) *c* and (c) *a* axes. The solid lines represent the unit cell. Orange, pink, red, dark blue, green and black spheres and light blue octahedra stand for O(O1), O(O2), O(O3), Nd/Ca, Ba, H atoms and ScO₆ octahedra, respectively. In panels (b) and (c), the most stable position at O3 site was set to 0 eV. Dotted lines with arrows show possible oxide-ion diffusion pathways.

End of Electronic Supplementary Information.