Supporting Information

Alloy-Strain-OutputInducedLatticeDislocationinNi₃FeN/Ni₃FeUltrathinNanosheetsforHighlyEfficientOverallSplitting

Zijian Li,^{a, d#} Haeseong Jang,^{b#} Danni Qin,^a Xiaoli Jiang,^a Xuqiang Ji,^{a,c*} Min Gyu Kim,^d Lijie Zhang,^{a*} Xien Liu,^{a*}and Jaephil Cho^{b*}

- a. State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China).
- b. Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (South Korea).
- c. College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- d. Department of Chemistry, City University of Hong Kong, Hong Kong, China
- e. Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang 790-784 (Korea).

List of contents

- 1. Chemicals
- 2. Synthesis Method
- 3. Materials characterization
- 4. Electrochemically active surface area (ECSA) calculation

Fig. S1 XRD patterns of (a) Ni₃FeN, (b) Ni₃Fe and (c) Ni₃FeN/Ni₃Fe-bulk.

Fig. S2 XRD patterns of d-Ni₃FeN/Ni₃Fe with different thermal ammonolysis temperature (400°C, 450°C, 550°C and 600°C).

Fig. S3 XRD patterns of samples derived from other Ni₃FeAl-LDH precursors with different ratios of Fe³⁺: Al³⁺ (10: 0, 9.5: 0.5, 8: 2 and 7: 3).

Fig. S4 (a) low-magnification SEM and (b) SEM images of d-Ni₃FeN/Ni₃Fe.

Fig. S5 SEM image of Ni₃FeN/Ni₃Fe-bulk.

Fig. S6 (a) low-magnification TEM and (b) TEM images of d-Ni₃FeN/Ni₃Fe. (c-d) HAADF-STEM images of d-Ni₃FeN/Ni₃Fe.

Fig. S7 HRTEM image of Ni₃FeN.

Fig. S8 (a) EDX spectrum of d-Ni₃FeN/Ni₃Fe. (b) Elemental distribution mapping of d-Ni₃FeN/Ni₃Fe.

Fig. S9 XPS survey spectra of Ni₃FeN and d-Ni₃FeN/Ni₃Fe (top: Ni₃FeN, bottom: d-Ni₃FeN/Ni₃Fe).

Fig. S10 EPR spectrum of d-Ni₃FeN/Ni₃Fe.

Fig. S11 Cyclic voltammetry curves of the (a) d-Ni₃FeN/Ni₃Fe, (b) Ni₃Fe, (c)

Ni₃FeN and (d) Ni₃FeN/Ni₃Fe-bulk at various scan rates (40, 60, 80, 100 and 120 mV s⁻¹) in 1.0 M KOH for OER.

Fig. S12 Cyclic voltammetry curves of the (a) d-Ni₃FeN/Ni₃Fe, (b) Ni₃Fe, (c)

 Ni_3FeN and (d) Ni_3FeN/Ni_3Fe -bulk at various scan rates (40, 60, 80, 100 and 120 mV s⁻¹) in 1.0 M KOH for HER.

Fig. S13 LSV curves normalized to the electrochemically active surface area (ECSA) for (a) OER and (b) HER.

Fig. S14 (a) LSV curves and (b) Tafel plots for OER evaluation of samples derived from Ni₃FeAl-LDH precursors with different ratios of Fe³⁺: Al³⁺ (10: 0, 9.5: 0.5, 9: 1, 8: 2 and 7: 3). (c) LSV curves and (d) Tafel plots for HER evaluation of samples derived from Ni₃FeAl-LDH precursors with different ratios of Fe³⁺: Al³⁺ (10: 0, 9.5: 0.5, 9: 1, 8: 2 and 7: 3).

Fig. S15 (a) LSV curves and (b) Tafel plots for OER evaluation of d-Ni₃FeN/Ni₃Fe with different thermal ammonolysis temperature (400°C, 450°C, 500°C, 550°C and 600°C). (c) LSV curves and (d) Tafel plots for HER evaluation of d-Ni₃FeN/Ni₃Fe with different thermal ammonolysis temperature (400°C, 450°C, 500°C, 550°C and 600°C).

Table S1. Comparison of OER performance in alkaline medium for d-Ni $_3$ FeN/Ni $_3$ Fe with other recently reported OER electrocatalysts.

Table S2. Comparison of HER performance in alkaline medium for d- Ni_3FeN/Ni_3Fe with other recently reported HER electrocatalysts.

Table S3. Comparison of two-electrode overall water splitting performance in alkaline medium for d-Ni₃FeN/Ni₃Fe with other recently reported electrocatalysts.

Table S4 Comparison of the value of $C_{\rm dl},~R_{\rm s},~R_{\rm ct}$ for different catalyst samples for OER in alkaline medium.

Table S5 Comparison of the value of C_{dl} , R_s , R_{ct} for different catalyst samples for HER in alkaline medium.

Chemicals

Al $(NO_3)_3 \cdot 9H_2O$ (MW: 375.13) and NaOH were purchased from Sinopharm Chemical Reagent Co., Ltd. Fe $(NO_3)_3 \cdot 9H_2O$ (MW: 404), NaNO₃ and Formamide were obtained from MACKLIN Co., Ltd. Ni $(NO_3)_2 \cdot 6H_2O$ (MW: 290.79), Nafion (5 wt%), commercial Pt/C (20 wt%) catalyst and commercial IrO₂ catalyst were ordered at Sigma-Aldrich Co. Ltd. All of the reagents were purchased and directly used without further purification.

Synthesis Method

Synthesis of Ni₃FeN: The synthesis procedure is very similar with that of d-Ni₃FeN/Ni₃Fe. Firstly, solution A containing of 1.50 mmol

Ni (NO₃)₂· 6H₂O and 0.50 mmol Fe(NO₃)₃· 9H₂O (Ni/Fe molar ratios was 30:10) were dissolved in 40.0 mL of distilled water. Solution B containing NaNO₃ was prepared by dissolving the salt in 40 mL distilled water containing 25 vol% formamide to give a base concentration of 0.020 M. Solution A was added to solution B drop by drop. Simultaneously, 100 ml 0.25 M NaOH was added dropwise to solution B to maintain the system at a pH value of ca. 10 under magnetic stirring at 80 ° C. The reaction was completed within 30 min. The precipitates were collected by centrifugation, washed with water and ethanol for 3 times, respectively, and then freeze-dried for 12h to prepare ultrathin Ni₃Fe-LDH nanosheets. Finally, Ni₃Fe-LDH nanosheets were pyrolyzed by heating to 500 ° C at a heating rate of 5 ° C min⁻¹ under a NH₃ gas flow and further treated at 500 ° C under

 $\rm NH_3$ for 2 h. After the temperature had reduced to room temperature naturally, $\rm Ni_3FeN$ nanosheets were synthesized.

Synthesis of Ni₃Fe: The synthesis method of Ni₃Fe is very similar to that of d-Ni₃FeN/Ni₃Fe. The only difference is Ni₃Fe was obtained after pyrolyzing under H₂/Ar flow instead of NH₃ flow, and the rest synthesis process was same as d-Ni₃FeN/Ni₃Fe.

Synthesis of Ni₃FeN/Ni₃Fe-bulk: Ni₃FeN/Ni₃Fe-bulk was synthesized through hydrothermal method. 6.0 mmol Ni(NO₃)₂· $6H_2O$ (1.74 g), 2.0 mmol Fe(NO₃)₃· $9H_2O$ (0.808 g), 40.0 mmol urea (2.40 g) and 16.2 mmol NH₄F (0.60 g) were dissolved in 80 mL H₂O, and then transferred to a Teflon-lined autoclave at 120 ° C for 25 h. After the same above-mentioned thermal ammonolysis process, the Ni₃FeN/Ni₃Fe-bulk was fabricated.

Materials characterization

The morphology and composition of the materials were characterized by SEM, TEM, AFM, XRD, XPS, XANES and EXAFS measurements. A JSM-7500F field-emission scanning electron microscope was used to record SEM images. TEM and HRTEM images were collected on a JEOL JEM-2100F transmission electron microscope with an operating voltage of 200 kV. AFM images were investigated by a Multimode 8 SPM 9700 atomic force microscope. XRD was obtained on a D/Max2000 X-ray diffraction system. XPS spectra were recorded on an Escalab instrument (Escalab 250 xi, Thermo scientific, England) with a calibration relative to the carbon 1s standard value of 284.6 eV. Ni and Fe K-edge XANES and EXAFS spectra were tested by the BL10C beam line with the Pohan Light Source (PLS-II)

Electrochemically active surface area (ECSA) calculation

In this work, we use electrochemical double layer capacitances (C_{dl}) to characterize electrochemical active surface area (ECSA). The C_{dl} was measured by cyclic voltammograms in a potential region of 0 V to 0.2 V vs RHE with different scan rate of 40 to 120 mv s⁻¹. The C_{dl} is estimated by plotting the ΔJ (J_a - J_c)/2 at 0.1 V vs. RHE against the scan rates, where the slope is C_{dl} . The ECSA of 1 cm² is represented by a special capacitance value (C_s) 0.040 mF cm⁻² in 1 M KOH based on typical reported values. Hence, the ECSA of the catalyst layer can be calculated as:

$$ECSA = \frac{C_{dl}}{C_s}$$

Fig. S1 XRD patterns of (a) Ni_3FeN , (b) Ni_3Fe and (c) Ni_3FeN/Ni_3Fe -bulk.

Fig. S2 XRD patterns of $d-Ni_3FeN/Ni_3Fe$ with different thermal ammonolysis

Fig. S3 XRD patterns of samples derived from other $\rm Ni_3FeAl-LDH$ precursors

··· 1 1.00 · ·· 0 0 2+ · 12+ (10 0 0 0 0 0 0 1 0 2)

Fig. S4 (a) low-magnification SEM and (b) SEM images of $d-Ni_3FeN/Ni_3Fe$.

Fig. S5 SEM image of Ni₃FeN/Ni₃Fe-bulk.

Fig. S6 (a) low-magnification TEM and (b) TEM images of d-Ni₃FeN/Ni₃Fe. (cd) HAADF-STEM images of d-Ni₃FeN/Ni₃Fe.

Fig. S7 HRTEM image of Ni₃FeN.

Fig. S8 (a) EDX spectrum of d-Ni₃FeN/Ni₃Fe. (b) Elemental distribution mapping of d-Ni₃FeN/Ni₃Fe.

Fig. S9 XPS survey spectra of Ni₃FeN and d-Ni₃FeN/Ni₃Fe (top: Ni₃FeN, bottom: d-Ni₃FeN/Ni₃Fe).

Fig. S10 EPR spectrum of $d-Ni_3FeN/Ni_3Fe$.

Fig. S11 Cyclic voltammetry curves of the (a) $d-Ni_3FeN/Ni_3Fe$, (b) Ni_3Fe , (c) Ni_3FeN and (d) Ni_3FeN/Ni_3Fe -bulk at various scan rates (40, 60, 80, 100 and 120 mV s⁻¹) in 1.0 M KOH for OER.

Fig. S12 Cyclic voltammetry curves of the (a) d-Ni₃FeN/Ni₃Fe, (b) Ni₃Fe, (c) Ni₃FeN and (d) Ni₃FeN/Ni₃Fe-bulk at various scan rates (40, 60, 80, 100 and 120 mV s⁻¹) in 1.0 M KOH for HER.

Fig. S13 LSV curves normalized to the electrochemically active surface area (ECSA) for (a) OER and (b) HER.

We normalized the LSV curves by ECSA calculated from C_{dl} . However, in fact, the results shown below were not ideal. We believed that due to the d-Ni₃FeN/Ni₃Fe's ultrathin nanosheet morphology and large amount of lattice defects, the ECSA value of d-Ni₃FeN/Ni₃Fe for OER and HER significantly increased, which was much bigger than Ni₃FeN, Ni₃Fe and Ni₃FeN/Ni₃Fe-bulk. Therefore, the specific activity of d-Ni₃FeN/Ni₃Fe was smaller than other samples.

Fig. S14 (a) LSV curves and (b) Tafel plots for OER evaluation of samples derived from Ni₃FeAl-LDH precursors with different ratios of Fe³⁺: Al³⁺ (9.5: 0.5, 9: 1, 8: 2 and 7: 3). (c) LSV curves and (d) Tafel plots for HER

In order to better illustrate the effect of defect density on catalytic performances, using the same synthesis method, we supplemented a series of Ni₃Fe-LDH-V_{Al} precursors with different Al vacancies by varying the Fe³⁺/Al³⁺ molar ratio (9.5: 0.5, 9: 1, 8: 2 and 7: 3), and annealed them with the same procedure, thus obtaining a series of d-Ni₃FeN/Ni₃Fe with different defect density. The OER and HER activities were tested under the same conditions and shown in Fig. S13. Apparently, the electrocatalytic activity first increases as the amount of Al vacancies increases, as demonstrated by the superior OER and HER activities of 9: 1 to 9.5: 0.5. This can be attributed to the increase of defects, which leads to the increase of active sites on d-Ni₃FeN/Ni₃Fe. However, with the further increase of Al vacancies, the catalytic activity shows obvious decay, owing to that abundant defects on d-Ni₃FeN/Ni₃Fe contribute to the decrease of interfacial area volume, destruction of both the optimized electron state and integrity of the structure.

Fig. S15 (a) LSV curves and (b) Tafel plots for OER evaluation of $d-Ni_3FeN/Ni_3Fe$ with different thermal ammonolysis temperature (400°C, 450°C, 500°C, 550°C and 600°C). (c) LSV curves and (d) Tafel plots for HER evaluation of $d-Ni_3FeN/Ni_3Fe$ with different thermal ammonolysis temperature (400°C, 450°C, 550°C and

Catalyst	Overpotential (10 mA cm ⁻²)	Tafel slop (mV dec ⁻¹)	Electrolyte	Ref.
d-Ni ₃ FeN/Ni ₃ Fe	250	51	1 M KOH	This work
CM (1:0.1)	300	118	1 M KOH	Sci. Bull. 2020 , <i>65</i> , 460-466
MoS ₂ / <i>r</i> Fe-NiCo ₂ O ₄	270	39	1 M NaOH	J. Am. Chem. Soc. 2020 , <i>142</i> , 50-54
Co _{0.15} Fe _{0.85} N _{0.5} NSs	266	30	1 М КОН	Nano Energy. 2019 , <i>57</i> , 644-652
Fe _{7.2%} -Ni ₃ S ₂ NSs/ NF	295	71	1 M KOH	Nanoscale, 2019 , <i>11</i> , 2355-2365
Mo ₅₁ Ni ₄₀ Fe ₉ NBs	257	51	1 M KOH	ACS Catal. 2019 , <i>9</i> , 1013–1018
Fe ₁ Ni ₂ -BDC	260	35	1 M KOH	ACS Energy Lett. 2019 , <i>4</i> , 285–292
Co _{0.5} (V _{0.5})	282	64	1 M KOH	Adv. Energy Mater. 2019 , <i>10</i> , 1903571
W ₂ N/WC	320	83.8	1 M KOH	Adv. Mater. 2019 , <i>32</i> , 1905679
C0 ₃ O ₄ /CeO ₂ NHs	270	60	1 M KOH	Adv. Mater. 2019 , <i>31</i> , 1900062
Fe-UTN	270	36.6	1 М КОН	Angew. Chem. Int. Ed. 2019 , <i>59</i> , 2313- 2317

Table S1 Comparison of OER performance in alkaline medium for d-Ni $_3{\rm FeN/Ni}_3{\rm Fe}$ with other recently reported OER electrocatalysts.

Catalyst	Overpotential (10 mA cm ⁻²)	Tafel slop (mV dec ⁻¹)	Electrolyte	Ref.
d-Ni ₃ FeN/Ni ₃ Fe	125	98	1 M KOH	This work
Fe ₃ C-Co/NC	238	108.8	1 M KOH	Adv. Funct. Mater. 2019 , <i>29</i> , 1901949
O-C ₀₂ P-3	160	61.1	1 M KOH	Adv. Mater. 2017 , <i>29</i> , 1606980
Fe ₂ P ₂ S ₆ NCs	175	137	1 M KOH	Small Methods 2019 , <i>4</i> , 19006323
R-NCO	135	52	1 М КОН	J. Am. Chem. Soc. 2018 , <i>140</i> , 13644–13653
Co-Ni ₃ N	194	156	1 M KOH	Adv. Mater. 2018 , <i>30</i> , 170551
Crys-AMO	138	50	1 M KOH	J. Mater. Chem. A, 2019 , <i>7</i> , 257–268
Co-MoS ₂	179	62	1 M KOH	ACS Nano 2018 , <i>12</i> , 4565–4573
Co-BDC/MoS ₂	248	86	1 M KOH	Small 2019 , <i>15</i> , 1805511
NiFeP	178	69	1 M KOH	Appl. Surf. Sci. 2018 , <i>457</i> , 1081–1086
PN-CMS40 NTs	178	98	1 M KOH	J. Mater. Chem. A, 2017 , <i>5</i> , 25410–25419

Table S2 Comparison of HER performance in alkaline medium for d-Ni $_3{\rm FeN/Ni}_3{\rm Fe}$ with other recently reported HER electrocatalysts.

Table	S3	Comp	bari	ison	of	two-eleo	etro	le overal	l wat	er sp	litting	5
perfo	rmar	nce i	in a	alkal	ine	medium	for	d-Ni ₃ FeN	/Ni ₃ Fe	e with	other	recently
report	ted	elec	etro	ocata	ilys	ts.						

Catalyst	Voltage (10 mA cm ⁻²)	Electrolyte	Ref.
d-Ni ₃ FeN/Ni ₃ Fe	1.61	1 M KOH	This work
Co2P/CoP	1.65	1 M KOH	J. Power Sources. 2018 , <i>402</i> , 345
Co-NC@Mo ₂ C	1.685	1 M KOH	Nano Energy. 2019 , <i>57</i> , 746-752
NF@G-5@Ni ₃ S ₂	1.62	1 M KOH	J. Electroanal. Chem, 2020 , <i>858</i> , 113795
Ni/Ni(OH) ₂	1.59	1 M KOH	Adv. Mater. 2020 , <i>32</i> , 1906915
MoS ₂ -NiS ₂ /NGF/NF	1.64	1 M KOH	Appl. Catal. B. 2019 , <i>254</i> , 15–25
E-Mo–NiCoP	1.61	1 M KOH	Nano-Micro Lett. 2019 , 11:55
CoFeZr oxides/NF	1.64	1 M KOH	Adv. Mater. 2019 , <i>31</i> , 1901439
P–C0 ₃ O ₄ NWs	1.61	1 M KOH	Energy Stor. Mater. 2019 , <i>23</i> , 1-7
CoP NFs	1.65	1 M KOH	ACS Catal. 2020 , <i>10</i> , 412–419

Table S4	Comparison	of the	value of	C_{d1} , R_s ,	$R_{\rm ct}$ for	different
catalyst	samples fo	r OER in	n alkaline	medium.		

Catalyst Sample	C _{dl} (F)	$R_s(\Omega)$	$R_{ct}(\Omega)$
d-Ni ₃ FeN/Ni ₃ Fe	0.00091	13.41	35.58
Ni ₃ FeN	0.00052	9.65	55.89
Ni ₃ Fe	0.00484	10.35	51.78
Ni ₃ FeN/Ni ₃ Fe-bulk	0.00003	11.22	1381.23
IrO ₂	0.00043	13.48	40.94

Table S5 Comparison of the value of $C_{\rm dl},\ R_{\rm s},\ R_{\rm ct}$ for different catalyst samples for HER in alkaline medium.

Catalyst Sample	C _{dl} (F)	$R_s(\Omega)$	$R_{ct}(\Omega)$
d-Ni ₃ FeN/Ni ₃ Fe	0.00058	16.91	32.56
Ni ₃ FeN	0.00052	11.54	56.77
Ni ₃ Fe	0.00102	10.35	51.78
Ni ₃ FeN/Ni ₃ Fe-bulk	0.00005	10.21	1386.94
Pt/C	0.00027	10.18	31.76