Supplementary Information

A fast and general approach to carbon coated Janus metal/oxide hybrid for catalytic water splitting

Guoge Zhang,^{*a} Xuewang Huang,^a Xiao Ma,^a Yan Liu,^b Yiran Ying,^c Xuyun Guo,^c Nianqing Fu,^a Fei Yu,^a Huijun Wu,^d Ye Zhu,^c and Haitao Huang^{*c}

^a School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, P. R. China

^b School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China

^c Department of Applied Physics, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Hong Kong, China

^d School of Civil Engineering, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China

† Corresponding Authors: ggzhang@scut.edu.cn; aphhuang@polyu.edu.hk.

Figure S1. XPS spectra of C 1s for CoMo/CoMoO_x.

Figure S2. SEM images of (a, b) CoMo and (c, d) CoMo/CoMoO_x.

Figure S3. XRD patterns of (a) CoMo/CoMoO_x and (b) CoMo.

Figure S4. Raman spectra of CoMo/CoMoO_x and CoMo.

Figure S5. (a) Low magnification TEM image and (b) HRTEM image for $CoMo/CoMoO_x$. (c) Low magnification TEM image and (d) HRTEM image for CoMo.

Figure S6. SEM images of (a) $CoMo/CoMoO_x@C$ and (b) $CoMo/CoMoO_x$ after stability test.

Figure S7. CV curves of (a) CoMo/CoMoO_x@C and (b) CoMo/CoMoO_x recorded in 1M KOH at a scan rate of 100 mV s⁻¹.

Figure S8. Raman spectra of (a) CoMo/CoMoO_x@C and (b) CoMo/CoMoO_x.

Figure S9. Energy dispersive X-ray (EDX) spectra of CoMo/CoMoO_x (a) before and (b) after stability test.

Figure S10. LSV curves measured in 1 M KOH at a scan rate of 1 mV s^{-1} . Symbols a, a' and a'' refer to the onset potential of hydrogen adsorption.

Figure S11. Elemental mapping images of CoMo obtained by normal cathodic deposition at 20 mA cm⁻² without plasma arcing.

Figure S12. Contact angle of (a) CoMo/CoMoO_x@C and (b) CoMo/CoMoO_x.

Figure S13. Nyquist plots obtained at an HER overpotential of 80 mV in 1 M KOH.

Figure S14. Equivalent circuit used to fit the EIS data.

Figure S15. CV curves recorded in 1M KOH at different scan rates in the region of 0.5~0.6 V vs. RHE for (a) CoMo/CoMoO_x@C, (b) CoMo/CoMoO_x and (c) CoMo.

Figure S16. Plots showing the extraction of the electrochemical double layer capacitance (Cdl).

Figure S17. Specific activity obtained from the normalization of the HER current by the ECSA.

Figure S18. (a) CV curves for heat-treated CoMo/CoMoO_x@C (100°C for 12 hours), and (b) the extraction of the electrochemical double layer capacitance (C_{dl}). Solution: 1M KOH.

The C_{dl} was 0.96 mF cm⁻² for CoMo/CoMoO_x@C after the heat treatment at 100 °C. The ECSA was 24 cm² assuming that the specific capacitance of a planar surface was 40 μ F cm⁻².

Figure S19. The Brunauer-Emmett-Teller (BET) isotherms for (a) as-prepared and (b) heat-treated CoMo/CoMoO_x@C (100°C for 12 hours).

The overall isotherm of both materials can be identified as type IV according to the IUPAC classification. The BET surface area was 3.72 and $3.86 \text{ m}^2 \text{ g}^{-1}$ for as-prepared and heat-treated CoMo/CoMoO_x@C, respectively. The small surface area was attributed to the wrapping of nanoparticles by carbon layer.

Figure S20. The iR-corrected linear sweep voltammetry (LSV) curves of $CoMo/CoMoO_x@C$ prepared on different substrates. Scan rate: 5 mV s⁻¹. Solution: 1M KOH.

Figure S21. The iR-corrected LSV curves of (a) NiMo/NiMoO_x@C and NiMo, and (b) NiCoMo/NiCoMoO_x@C and NiCoMo. Scan rate: 5 mV s^{-1} . Solution: 1M KOH.

Figure S22. The iR-corrected electrocatalytic measurements of NiFeMo/NiFeMoO_x in 1 M KOH. (a) LSV, (b) CV, and (c) the overall water splitting. Scan rate: 5 mV s^{-1} .

Material	Solution	Current collectorη10(mV)Tafel (mV)		Tafel slope (mV dec ⁻¹)	Reference	
CoMo/CoMoO _x @C	1M KOH	Planar, copper foil	76	75.2	This work	
FeCo/Co ₂ P@NP CF ¹	1M KOH	Glassy carbon	260	120	Adv. Energy. Mater. 2020	
CoMn/CoMn ₂ O ₄	1M KOH	3D, nickel foam	69	90	Adv. Funct. Mater. 2020	
Co@N- CNTs@rGO ³	1M KOH	Glassy carbon	108	55	Adv. Mater. 2018	
C-Ni _{1-x} O ⁴	1M KOH	Nickel foam	27	36	Nat. Commun. 2020	
LSC&MoSe ₂ ⁵	1M KOH	Glassy carbon	>200	34	Nat. Commun. 2019	
Ni-CoP/HPFs ⁶	1M KOH	Glassy carbon	92	71	Nano Energy 2019	
Ni-N _x -C ⁷	1M KOH	Exfoliated graphene foil	147	114	Energy Environ. Sci. 2019	
NiCoS@HsGD Y@Ni,Co- MoS2 ⁸	1М КОН	Carbon paper	100	89.5	Nat. Commun. 2019	
Zn _{0.08} Co _{0.92} P nanowall array ⁹	1M KOH	Titanium mesh	67	39	Adv. Energy Mater. 2017	
NiCoP/rGO ¹⁰	1M KOH	Carbon paper	209	124.1	Adv. Funct. Mater. 2016	
CoO _x @CN ¹¹	1M KOH	Glassy carbon	Glassy carbon 232 N. A.		J. Am. Chem. Soc. 2015	
MoNi4 ¹²	1M KOH	Nickel foam	15	30	Nat. Commun. 2017	
$MoS_2/Ni_3S_2{}^{13}$	1M KOH	Nickel foam	110	83	Angew. Chem. 2016	
sc-Ni ₂ P ⁻ /NiHO ¹⁴	1M KOH	Nickel foam	60	75	Angew. Chem. 2019	
o-CoSe ₂ P ¹⁵	1M KOH	Glassy carbon	104	69	Nat. Commun. 2018	
Ni/NiO ¹⁶	1M NaOH	Nickel foam	46 mV @ 20 mA cm ⁻²	65	J. Mater. Chem. A 2016	

Table S1. Performance comparison between CoMo/CoMoO_x@C and recently reported non- precious HER catalysts.

NiO/Ni-CNT ¹⁷	1M KOH	Glassy carbon	80	82	Nat. Commun. 2014
Iron-nickel sulfide ultrathin nanosheets ¹⁸	0.5M H ₂ SO ₄	Glassy carbon	105	40	J. Am. Chem. Soc. 2015
Mo-doped Ni ₃ S ₂ nano-rods ¹⁹	1М КОН	Nickel foam	278 mV @ 100 mA cm ⁻²	72.9	J. Mater. Chem. A 2017
NiMo hollow nanorod ²⁰	1M KOH	Ti mesh	92	76	J. Mater. Chem. A 2015
NiMo ₃ S ₄ /CTs ²¹	0.5M H ₂ SO ₄	Carbon textile	156	46.2	Nano Energy 2018
Ni ₃ FeN/r-GO ²²	1M KOH	Nickel foam	94	90	ACS Nano 2018

Table S2. Elemental percentage of CoMo/CoMoO_x before and after stability test.

Elements	Before test / wt.%	After test / wt.%
0	10.9	1.1
Co	69.9	85.6
Мо	19.2	13.3

 Table S3. Electrical elements fitted by the equivalent circuit in Figure S14.

	R_s / Ω	CPE ₁ / mF	R_{ad} / Ω	CPE ₂ / mF	R_{ct}/Ω
CoMo/CoMoOx@C	2.10	523	0.88	730	1.80
CoMo/CoMoO _x	2.39	630	0.92	715	5.88
СоМо	2.45	490	1.43	720	20.81

Table S4. Comparison of overall water splitting performance betweenNiFeMo/NiFeMoOx and recently reported catalysts.

Material	Solution	Current collector	Potential @ 10mA/cm ²	Reference
NiFeMo/NiFeMoO _x	1M KOH	Planar, copper foil	1.51	This work
LSC&MoSe ₂ ⁵	1M KOH	Ni mesh	2.3V @ 100 mA/cm ²	Nat. Commun. 2019
CoFeZr oxides nanosheets ²³	1M KOH	3D, Ni foam	1.63	Adv. Mater. 2019
FeCo/Co ₂ P@NPCF ¹	1М КОН	Carbon paper	1.68	Adv. Energy. Mater. 2020
Ni NP/Ni-N-C ⁷	1M KOH	Graphite foil	1.58	Energy & Environ. Sci. 2019
NC–NiCu–NiCuN ²⁴	1M KOH	3D, nickel foam	1.56	Adv. Funct. Mater. 2018
O-CoMoS ²⁵	1M KOH	Carbon fiber cloth	1.6	ACS Catalysis 2018
Ni ₃ FeN/r-GO ²²	1M KOH	3D, Ni foam	1.6	ACS Nano 2018
Pt-CoS ₂ /CC ²⁶	1M KOH	Carbon cloth	1.55	Adv. Energy Mater. 2018
NiCoP/rGO ¹⁰	1M KOH	Carbon fiber paper	1.59	Adv. Funct. Mater. 2016
NiFe LDH@NiCoP/NF ²⁷	1M KOH	3D, Ni foam	1.57	Adv. Funct. Mater. 2018
Fe _{0.09} Co _{0.13} -NiSe ₂ ²⁸	1M KOH	Carbon fiber cloth	1.52	Adv. Mater. 2018
Ni ₂ P@NiFe hydroxide ²⁹	1M KOH	3D, Ni foam	1.51	Chem. Sci. 2018
Ni-Fe NP ³⁰	1M KOH	3D, Ni foam	1.47	Nat. Commun. 2019
Ni_2Fe_1 -Mo ³¹	1M KOH	3D, Ni foam	1.66	J. Mater. Chem. A 2018
EG/Co _{0.85} Se/NiFe LDH ³²	1M KOH	Graphite foil	1.67	Energy & Environ. Sci. 2016
V-CoP@a-CeO ₂ ³³	1M KOH	Carbon cloth	1.56	Adv. Funct. Mater. 2020

REFERENCES

- Q. Shi, Q. Liu, Y. Ma, Z. Fang, Z. Liang, G. Shao, B. Tang, W. Yang, L. Qin and X. Fang, *Adv. Energy Mater.*, 2020, 10, 1903854.
- 2. C. Wang, H. Lu, Z. Mao, C. Yan, G. Shen and X. Wang, *Adv. Funct. Mater.*, 2020, **30**, 2000556.
- 3. Z. Chen, R. Wu, Y. Liu, Y. Ha, Y. Guo, D. Sun, M. Liu and F. Fang, *Adv. Mater.*, 2018, **30**, 1802011.
- T. Kou, M. Chen, F. Wu, T. J. Smart, S. Wang, Y. Wu, Y. Zhang, S. Li, S. Lall, Z. Zhang, Y.-S. Liu, J. Guo, G. Wang, Y. Ping and Y. Li, *Nat. Commun.*, 2020, 11, 590.
- 5. N. K. Oh, C. Kim, J. Lee, O. Kwon, Y. Choi, G. Y. Jung, H. Y. Lim, S. K. Kwak, G. Kim and H. Park, *Nat. Commun.*, 2019, **10**, 1723.
- Y. Pan, K. Sun, Y. Lin, X. Cao, Y. Cheng, S. Liu, L. Zeng, W.-C. Cheong, D. Zhao, K. Wu, Z. Liu, Y. Liu, D. Wang, Q. Peng, C. Chen and Y. Li, *Nano Energy*, 2019, 56, 411-419.
- C. Lei, Y. Wang, Y. Hou, P. Liu, J. Yang, T. Zhang, X. Zhuang, M. Chen, B. Yang, L. Lei, C. Yuan, M. Qiu and X. Feng, *Energy Environ. Sci.*, 2019, 12, 149-156.
- 8. S. Zhuo, Y. Shi, L. Liu, R. Li, L. Shi, D. H. Anjum, Y. Han and P. Wang, *Nat. Commun.*, 2018, **9**, 3132.
- T. Liu, D. Liu, F. Qu, D. Wang, L. Zhang, R. Ge, S. Hao, Y. Ma, G. Du, A. M. Asiri, L. Chen and X. Sun, *Adv. Energy Mater.*, 2017, 7, 1700020.
- L. Jiayuan, Y. Ming, Z. Xuemei, H. Zheng-Qing, X. Zhaoming, C. Chun-Ran, M. Yuanyuan and Q. Yongquan, *Adv. Funct. Mater.*, 2016, 26, 6785-6796.
- H. Jin, J. Wang, D. Su, Z. Wei, Z. Pang and Y. Wang, J. Am. Chem. Soc., 2015, 137, 2688-2694.
- J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu, X. Zhuang, M. Chen, E. Zschech and X. Feng, *Nat. Commun.*, 2017, 8, 15437.
- J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong, S. Liu, X. Zhuang and X. Feng, *Angew. Chem.*, 2016, **128**, 6814-6819.
- B. You, Y. Zhang, Y. Jiao, k. Davey and S. Qiao, *Angew. Chem. Int. Edit.*, 2019, 58, 11796-11800.
- Y.-R. Zheng, P. Wu, M.-R. Gao, X.-L. Zhang, F.-Y. Gao, H.-X. Ju, R. Wu, Q. Gao, R. You, W.-X. Huang, S.-J. Liu, S.-W. Hu, J. Zhu, Z. Li and S.-H. Yu, *Nat. Commun.*, 2018, 9, 2533.
- 16. X. Liu, X. Wang, X. Yuan, W. Dong and F. Huang, *J. Mater. Chem. A*, 2016, **4**, 167-172.
- M. Gong, W. Zhou, M.-C. Tsai, J. Zhou, M. Guan, M.-C. Lin, B. Zhang, Y. Hu, D.-Y. Wang, J. Yang, S. J. Pennycook, B.-J. Hwang and H. Dai, *Nat. Commun.*, 2014, 5, 4695.
- X. Long, G. Li, Z. Wang, H. Zhu, T. Zhang, S. Xiao, W. Guo and S. Yang, J. Am. Chem. Soc., 2015, 137, 11900-11903.
- 19. Z. Cui, Y. Ge, H. Chu, R. Baines, P. Dong, J. Tang, Y. Yang, P. M. Ajayan, M.

Ye and J. Shen, J. Mater. Chem. A, 2017, 5, 1595-1602.

- 20. J. Tian, N. Cheng, Q. Liu, X. Sun, Y. He and A. M. Asiri, *J. Mater. Chem. A*, 2015, **3**, 20056-20059.
- 21. D. Kong, Y. Wang, Y. V. Lim, S. Huang, J. Zhang, B. Liu, T. Chen and H. Y. Yang, *Nano Energy*, 2018, **49**, 460-470.
- 22. Y. Gu, S. Chen, J. Ren, Y. A. Jia, C. Chen, S. Komarneni, D. Yang and X. Yao, *ACS Nano*, 2018, **12**, 245-253.
- 23. L. Huang, D. Chen, G. Luo, Y.-R. Lu, C. Chen, Y. Zou, C.-L. Dong, Y. Li and S. Wang, *Adv. Mater.*, 2019, **31**, 1901439.
- 24. J. Hou, Y. Sun, Z. Li, B. Zhang, S. Cao, Y. Wu, Z. Gao and L. Sun, *Adv. Funct. Mater.*, 2018, **28**, 1803278.
- J. Hou, B. Zhang, Z. Li, S. Cao, Y. Sun, Y. Wu, Z. Gao and L. Sun, ACS Catal., 2018, 8, 4612-4621.
- 26. X. Han, X. Wu, Y. Deng, J. Liu, J. Lu, C. Zhong and W. Hu, *Adv. Energy Mater.*, 2018, **8**, 1800935.
- H. Zhang, X. Li, A. Hähnel, V. Naumann, C. Lin, S. Azimi, S. L. Schweizer, A. W. Maijenburg and R. B. Wehrspohn, *Adv. Funct. Mater.*, 2018, 28, 1706847.
- 28. Y. Sun, K. Xu, Z. Wei, H. Li, T. Zhang, X. Li, W. Cai, J. Ma, H. J. Fan and Y. Li, *Adv. Mater.*, 2018, **30**, 1802121.
- 29. F.-S. Zhang, J.-W. Wang, J. Luo, R.-R. Liu, Z.-M. Zhang, C.-T. He and T.-B. Lu, *Chem. Sci.*, 2018, **9**, 1375-1384.
- 30. B. H. R. Suryanto, Y. Wang, R. K. Hocking, W. Adamson and C. Zhao, *Nat. Commun.*, 2019, **10**, 5599.
- Y. Chen, C. Dong, J. Zhang, C. Zhang and Z. Zhang, J. Mater. Chem. A, 2018, 6, 8430-8440.
- 32. Y. Hou, M. R. Lohe, J. Zhang, S. Liu, X. Zhuang and X. Feng, *Energy Environ*. *Sci.*, 2016, **9**, 478-483.
- 33. L. Yang, R. Liu and L. Jiao, Adv. Funct. Mater., 2020, 30, 1909618.