Electronic Supplementary information

Low-cost and eco-friendly Br-doped $Cu_7Sn_3S_{10}$ thermoelectric compound with zT around unit

Tingting Deng, ^{abc} Pengfei Qiu,*^a Tong Xing, ^a, Zhengyang Zhou, ^a Tian-Ran Wei, ^d Dudi Ren, ^a Jie Xiao, ^a Xun Shi*^a and Lidong Chen ^{abc}

Fig. S1 Powder X-ray diffraction pattern (PXRD) of $Cu_7Sn_3S_{10-x}Br_x$ (x=0, 0.05, and 0.1) samples. The blue arrows represent the positions of the diffraction peaks for tetragonal phase.

Fig. S2 Magnified powder X-ray diffraction pattern (PXRD) of $Cu_7Sn_3S_{10-x}Br_x$ (x=1.5 and 2.0) samples in the low intensity range. The red arrows represent the positions of the diffraction peaks for Cu_4SnS_4 .

Fig. S3 Backscattered electron (BSE) image performed on Cu₇Sn₃S₈Br₂.

Fig. S4 Secondary electron (SE) image, Backscattered electron (BSE) image and Energy Dispersive X-ray Spectroscopy (EDS) mapping performed on Cu₇Sn₃S₈Br_{1.5}.

Fig. S5 Cycling test on electrical transport properties of Cu₇Sn₃S₉Br sample.

Fig. S6 Temperature dependence of Hall carrier mobility ($\mu_{\rm H}$) for Cu₇Sn₃S_{10-x}Br_x (x=0, 0.5, and 1.0) samples from 5 K to 300 K. The dashed lines represent the acoustic phonon scattering ($\mu_{\rm H}$ - $T^{-1.5}$) and alloy scattering ($\mu_{\rm H}$ - $T^{-0.5}$), respectively.

Fig. S7 Temperature dependences of (a) Lorenz number (*L*) and (b) carrier thermal conductivity (κ_c) for Cu₇Sn₃S_{10-x}Br_x (x=0, 0.1, 0.3, 0.5, 0.7, 1.0, and 1.5).

Fig. S8 Transverse sound velocity (v_t) , longitudinal wave sound velocity (v_l) , and average sound velocity (v_s) for Br-doped Cu₇Sn₃S₁₀ samples.

EDS.					
Nominal chemical compositions	Actual chemical compositions				
$Cu_7Sn_3S_{10}$	$Cu_{6.51}Sn_3S_{9.89}$				
$Cu_7Sn_3S_{9.9}Br_{0.1}$	Cu _{6.62} Sn ₃ S _{9.42} Br _{0.11}				
$Cu_7Sn_3S_{9.7}Br_{0.3}$	$Cu_{6.68}Sn_3\;S_{9.42}\;Br_{0.28}$				
$Cu_7Sn_3S_{9.5}Br_{0.5}$	$Cu_{6.72}Sn_3\;S_{9.42}\;Br_{0.38}$				
$Cu_7Sn_3S_{9.3}Br_{0.7}$	$Cu_{6.59}Sn_3\;S_{9.39}Br_{0.44}$				
$Cu_7Sn_3S_9Br$	Cu _{6.93} Sn ₃ S _{9.22} Br _{0.46}				
$Cu_7Sn_3S_{8.5}Br_{1.5}$	$Cu_{6.49}Sn_3\;S_{9.30}Br_{0.83}$				
$Cu_7Sn_3S_8Br_2$	$Cu_{6.75}Sn_3\;S_{8.96}Br_{0.63}$				

Table S1 Actual chemical compositions of the $Cu_7Sn_3S_{10-x}Br_x$ samples determined by

Table S2 Atomic coordinates and isotropic displacement parameters for $Cu_7Sn_3S_9Br$.

Atom	Site	x/a	y/b	z/c	$B_{\rm eq}$ [Å ²]	Occupancy
Cu1	4 <i>a</i>	0	0	0	1.24(10)	0.6999 Cu+0.3 Sn
S 1	4 <i>c</i>	1/4	1/4	1/4	0.7(2)	0.8999 S+0.1 Br

Composition	$Cu_{0.69}Sn_{0.3}S_{0.9}Br_{0.1}$
Formula weight	116.30
Space group	<i>F</i> 3 <i>m</i> (No. 216)
<i>a</i> /Å	5.4409(2)
Unit cell volume /Å ³	161.06(2)
F (000) /e	212.8
Ζ	4.0
μ/cm^{-1}	611.73
Calculated density (g cm ⁻³)	4.8217(5)
Radiation, wavelength(Å)	CuKa, 1.54056
<i>Т</i> (К)	295
Data range 2θ (°)	5 - 100
No. of reflections	11
No. of refined structure parameters	7
Profile function	Pseudo-Voigt
Refinement mode	Full profile
R_i	0.0539
R_p	0.2932
R_{wp}	0.0857
Goodness of fit	13.140

Table S3. Crystallographic information for Cu₇Sn₃S₉Br.

Table S4 Selected Bond Lengths (Å) and Angles (°) for Cu₇Sn₃S₉Br.

Cu1-S1	2.4014(1)		
S1-Cu1-aS1	109.47(1)	Cu1-S1-aCu1	109.47(1)
S1-Cu1-bS1 [0000]	109.47(1)	Cu1-S1-bCu1 [0000]	109.47(1)
S1-Cu1-cS1 [0000]	109.47(1)	Cu1-S1-cCu1 [0000]	109.47(1)
aS1-Cu1-bS1 [0000]	109.47(1)	aCu1-S1-bCu1 [0000]	109.47(1)
aS1-Cu1-cS1	109.47(1)	aCu1-S1-cCu1	109.47(1)
bS1-Cu1-cS1	109.47(1)	bCu1-S1-cCu1	109.47(1)

Symmetry codes: +x, +y, +z; +z, +x, +y; +y, +z, +x; -y, +x, -z; -x, +z, -y; -z, +y, -x; +x, -y, -z; +z, -x, -y; +y, -z, -x; -y, -x, +z; -x, -z, +y; -z, -y, +x; -x, +y, -z; -z, +x, -y; -y, +z, -x; +y, +x, +z; +x, +z, +y; +z, +y, +x; -x, -y, +z; -z, -x, +y; -y -z, +x; +y, -x, -z; +x, -z, -y; +z, -y, -x;

Table S5 Density-of-state effective mass m_d^* for Cu₇Sn₃S_{10-x}Br_x and Cu₇Sn₃S_{10-x}Cl_x at

Compositions	$m_{\rm d}^{*}/m_{\rm e}$ @300 K	$m_{\rm d}^{*}/m_{\rm e}$ @750 K
$Cu_7Sn_3S_{10}$	3.5	4.2
$Cu_7Sn_3S_{9.9}Br_{0.1}$	4.0	4.9
$Cu_7Sn_3S_{9.7}Br_{0.3}$	4.0	4.8
$Cu_7Sn_3S_{9.5}Br_{0.5}$	4.1	4.8
$Cu_7Sn_3S_{9.7}Br_{0.3}$	4.6	5.3
$Cu_7Sn_3S_{9.0}Br_{1.0}$	4.7	5.9
$Cu_7Sn_3S_{8.5}Br_{1.5}$	4.6	6.8
$Cu_7Sn_3S_{9.7}Cl_{0.3}$	4.3	5.4
$Cu_7Sn_3S_{9.1}Cl_{0.9}$	5.4	7.1

300 K and 750 K.

Table S6 Detailed parameters used for the Callaway model. Here y (= x -0.1) is the
normalized Br-doping content in $Cu_7Sn_3Br_{0.1}S_{9.9-y}Br_y$.

у	0	0.2	0.4	0.6	0.9	1.4
z(=y/9.9)	0	0.0202	0.0404	0.06061	0.09091	0.14141
1 <i>-z</i>	1	0.9798	0.9596	0.93939	0.90909	0.85859
$M_{ m S}$	32.065	32.065	32.065	32.065	32.065	32.065
$M_{ m Br}$	79.904	79.904	79.904	79.904	79.904	79.904
r _S	1	1	1	1	1	1
r _{Br}	1.15	1.15	1.15	1.15	1.15	1.15
$\Gamma_{\rm mass}$	0	0.00695	0.01339	0.01934	0.02738	0.03863
З		635	635	635	635	635
$\Gamma_{ m strain}$		0.04706	0.09545	0.14493	0.22062	0.34871
Г		0.05401	0.10884	0.16426	0.24801	0.38734
<i>v</i> _s (m s ⁻¹)	2556	2545	2533	2503	2485	2417
$\Theta_{\rm D}({\rm K})$	280.9	279.7	278.5	275.1	273.2	265.7
<i>u</i> (300 K)		1.17472	1.67188	2.06579	2.54788	3.22849
<i>u</i> (500 K)		0.80962	1.15227	1.42375	1.75601	2.22508
u (750 K)		0.61603	0.87674	1.08331	1.33612	1.69303

Fuble of Fitting parameters used in theoretical 21 prediction bused on of D	ers used in theoretical zT prediction based on SPB model
--	--

<i>T</i> (K)	$m_{\rm d}^{*}/m_{\rm e}$	$\mu_0 (\mathrm{cm}^2 \mathrm{V}^{-1} \mathrm{s}^{-1})$	$\kappa_{\rm L} ({\rm W} { m m}^{-1} { m K}^{-1})$
200	4.0	17.0	1.4
500	5.0	7.0	0.80
750	5.0	3.3	0.60
/30	6.0	1.5	0.40