Supplementary Material

Significantly improved conductivity of spinel Co₃O₄ porous nanowires partially substituted by Sn in tetrahedral sites for high-performance quasi-solid-state supercapacitors

Yunjian Chen,^a Jia Zhu,^{b,*} Ni Wang,^{a,c} Huanyu Cheng,^b Xianzhong Tang,^a Sridhar Komarneni,^{c,*} Wencheng Hu^{a,*}

^a School of Materials and Energy, University of Electronic Science & Technology of China, Chengdu 611731, P. R. China

^b Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

^c Materials Research Institute and Department of Ecosystem Science and Management, 204
Energy and Environment Laboratory, The Pennsylvania State University, PA, 16802, USA
*Corresponding Authors: J. Zhu (jmz5364@psu.edu), S. Komarneni (sxk7@psu.edu), W. Hu (huwc@uestc.edu.cn)

1. Materials	1
2. The calculation of electrochemical performance	1
3. The cross-sectional SEM image of GF	2
4. XPS spectra of CSO@GF and Co ₃ O ₄ @GF	3
5. SEM images of GF and Co ₃ O ₄ @GF	4
6. N ₂ adsorption-desorption isotherms and pore size distribution of the GF, Co ₃ O ₄ @GF,	and
CSO@GF	5
7. Characterizations of CSO@GF with different Co/Sn ratios	6
8. CV curves of CSO@GF with different Co/Sn ratios	8
9. GCD curves of CSO@GF with different Co/Sn ratios	11
10. Electrochemical performance of CSO@GF with different Co/Sn ratios	12
11. Nyquist plots of CSO@GF with different Co/Sn ra	atios
14	
12. Electrochemical performance comparison of hydrothermal samples before and after	heat
treatment	15
13. Electrochemical performance comparison of GF, Co ₃ O ₄ @GF, and CSO@GF sam	ples
	20
14. Contributions from the capacitive and diffusion charge storage process for $Co_3O_4(c)$	<i>i</i>)GF
and CSO@GF samples	23
15. Characterizations of Co ₃ O ₄ @GF and CSO@GF after long-term GCD cycles	25
16. Characterizations of $Fe_2O_3@GF$ sample	26
17. Electrochemical performances of Fe ₂ O ₃ @GF electrodes	29
18. Characterizations of Fe ₂ O ₃ @GF sample after long-term GCD cycles	30
19. Electrochemical performance characteristics of ASC device before and after cycling	, test

1. Materials

Cobalt acetate tetrahydrate (Co(Ac)₂·4H₂O, AR, CAS: 71-48-7), stannous chloride dihydrate (SnCl₂·2H₂O, AR, CAS: 10025-69-1), ammonium fluoride (NH₄F, AR, CAS:12125-01-8), polyethylene glycol (PEG 200, AR, CAS: 25322-68-3), ferrous sulfate (FeSO₄·7H₂O, AR, CAS: 7720-78-7), aqueous ammonia (NH₃·H₂O, 25%, CAS: 1336-21-6), Poly(vinyl alcohol) 1799 (PVA 1799, AR, CAS: 9002-89-5), and potassium hydroxide (KOH, AR, CAS: 1310-58-3) were obtained from Aladdin Ltd. (Shanghai, China). All the reagents were used as received without further purification.

2. The calculation of electrochemical performance

Based on the GCD curves, the specific capacity (C, F g⁻¹) of the electrodes in a threeelectrode system can be calculated according to the equation (S1):

$$C = \frac{i \times \Delta t}{m \times \Delta U} \tag{S1}$$

where *i* (A) is the applied current, Δt (s) is the discharge time, *m* (g) is the mass of the electroactive materials in the electrodes, and ΔU (V) is the potential window in the discharging process.

In a two-electrode system, the specific capacitance (C, F g⁻¹) can be calculated from GCD curves according to the equation (S2):

$$C = \frac{i \times \Delta t}{m \times \Delta U} \tag{S2}$$

where *i* (A) represents the discharge current, *m* (g) is the mass of the whole electroactive materials in the ASC device, Δt (s) is the discharge time, ΔU (V) is the potential window in the discharging process.

For the ASC device, energy density (E, Wh kg⁻¹) and power density (P, W kg⁻¹) were calculated using the equation (S3) and (S4), respectively.

$$E = \frac{C \times \Delta U^2}{7.2} \tag{S3}$$

$$P = \frac{3600 \times E}{\Delta t} \tag{S4}$$

where C (F g⁻¹) is the volumetric capacitance (F g⁻¹), ΔU (V) is the potential window in the discharging process, and Δt (s) is the discharge time from GCD curves.

3. The cross-sectional SEM image of GF

Fig. S1 The cross-sectional SEM image of GF.

4. XPS spectra of CSO@GF and Co₃O₄@GF

Fig. S2 The full survey XPS spectrum of (a) CSO@GF, (b) Co₃O₄@GF, XPS spectra for (c) C 1s, (d) O 1s, and (e) Co 2p.

As shown in the Co 2p spectrum of the $Co_3O_4@GF$ sample (Fig. S2e), the atomic ratio of Co^{2+} : Co^{3+} in the sample is evaluated to be 1:2. Nevertheless, the CSO@GF sample possesses a Co^{2+} : Co^{3+} atomic ratio of 1:2.86 which is discussed in the manuscript, implying that Sn^{2+}/Sn^{4+} ions have been doped into Co_3O_4 .

5. SEM images of GF and Co₃O₄@GF

Fig. S4 SEM images of Co₃O₄@GF.

has see the wat

Fig. S5. (a) N_2 adsorption-desorption isotherms of GF, $Co_3O_4@GF$, and CSO@GF. The pore size distribution of the (b) GF, (c) $Co_3O_4@GF$, and (d) CSO@GF samples.

7. Characterizations of CSO@GF with different Co/Sn ratios

Fig. S6. SEM images of (a) CSO@GF 5-1, (b) CSO@GF 10-1, (c) CSO@GF 15-1. XRD patterns of GF, Co₃O₄@GF, CSO@GF 5-1, CSO@GF 10-1, and CSO@GF 15-1.

Fig. S7 (a) N_2 adsorption-desorption isotherms of CSO@GF 5-1, CSO@GF 10-1 and CSO@GF 15-1, HK adsorption and BJH pore size distribution curves of (b) CSO@GF 5-1, (c) CSO@GF 10-1 and (d) CSO@GF 15-1.

8. CV curves of CSO@GF with different Co/Sn ratios

Fig. S8 (a) CV curves at scan rate of 10 mV s⁻¹ for CSO@GF 5-1, CSO@GF 10-1, and CSO@GF 15-1, respectively. CV curves at different scan rates for (b) CSO@GF 5-1, (c) CSO@GF 10-1 and (d) CSO@GF 15-1, respectively.

From the CV curves of three samples (Fig. S8a), the CV curve of the CSO@GF 10-1 electrode exhibits a maximal integral area, suggesting an optimal capacitance.

Fig. S9 Variation of the voltammetric charge (q) with respect to the potential scan rates *v*: plot of q vs $v^{-1/2}$ (extrapolation of q to $v = \infty$ gives the outer charge q_o) of (a) CSO@GF 5-1, (c) CSO@GF 10-1 and (e) CSO@GF 15-1, respectively. Plot of 1/q vs $v^{1/2}$ (extrapolation of q to v = 0 gives the total charge q_T) of (b) CSO@GF 5-1, (d) CSO@GF 10-1 and (f) CSO@GF 15-1, respectively.

Fig. S10. Relative contributions of inner and outer voltammetric charge storage process of CSO@GF 5-1, CSO@GF 10-1, and CSO@GF 15-1.

Table S1.	The q _o	and q_T	of the	sample	es
-----------	--------------------	-----------	--------	--------	----

Sample (C g ⁻¹)	CSO@GF 5-1	CSO@GF 10-1	CSO@GF 15-1
q _o	48.9	420.9	5.7
q_{T}	751.8	1412.4	675.
q_o/q_T	6.5%	29.8%	0.8%

The voltammetric charge (q) was calculated by the integral area of CV curves at various scan rates. The q_o , denoting the accessible outer surface for ions at high scan rates, was determined by extrapolating the scan rate to infinity. The q_T , which corresponds to all the charge surface at slow scan rates, was calculated by the extrapolation of q to v = 0. Besides, the inner voltammetric charge, which indicates the inaccessible active surface, could be estimated from the difference between q_o and q_T . Thus, the ratio of q_o/q_T for CSO@GF 10-1 (29.8%) was significantly larger than those for CSO@GF 5-1 (6.5%) and CSO@GF 10-1 (0.8%), indicating CSO@GF 10-1 has more electrochemically active surface area, which is available for ion diffusion during the redox reaction.

9. GCD curves of CSO@GF with different Co/Sn ratios

Fig. S11. GCD curves at current density of 2 A g⁻¹ for CSO@GF 5-1, CSO@GF 10-1, and CSO@GF 15-1.

It can be seen that the capacitance of CSO@GF 10-1 is larger than those of other electrodes, implying that the CSO@GF electrode is more suitable than other electrodes for supercapacitors.

10. Electrochemical performance of CSO@GF with different Co/Sn ratios

Fig. S12. GCD curves at various current densities for (a) CSO@GF 5-1 and (c) CSO@GF 15-1, respectively. (d) The specific capacitances and Coulombic efficiency of the CSO@GF 5-1 and CSO@GF 15-1 electrode at different current densities.

Fig. S13 The specific capacitances of CSO@GF 5-1, CSO@GF 10-1, and CSO@GF 15-1 at different current densities.

Table	S2.	Specific	capacitance	and	retention	of sam	oles
		1	1				

Sample	CSO@GF	CSO@GF 10-1	CSO@GF 15-1
specific capacitance	890.8 F g ⁻¹	2032.6 F g ⁻¹	936.4 F g ⁻¹
specific capacity	445.4 C g ⁻¹	1016.3 C g ⁻¹	468.2 C g ⁻¹
retention	41.5%	68.9%	34.6%

As concluded from Fig. S11-S13 and Tab. S2, 10:1 (Co: Sn) is the optimal ratio to prepare CSO@GF.

11. Nyquist plots of CSO@GF with different Co/Sn ratios

Fig. S14. (a) Nyquist plots of CSO@GF 5-1 CSO@GF 10-1 and CSO@GF 15-1 electrodes, and the equivalent circuit model of (b) CSO@GF 5-1 and 10-1 and (c) CSO@GF 15-1.

b a 20 mV s CSOH@GF CSO@GF 10 mV s 30 5 mV s Current density (A g⁻¹) Current density (A g⁻¹) 2 mV s mV s 15 3 0 (-15 -3 0.5 0.5 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 Potential (V vs. Hg/HgO) Potential (V vs. Hg/HgO) **d**_{0.45} C 1.2 8 mV s 10 mV 6 m Current density(A g⁻¹) 0.40 0.8 Current density(A g⁻¹) 0.35 0.4 0.30 0.0 0.25 C_{dl}=27.04 mF cm⁻² -0.4 0.20 -0.8 0.15 10 0 2 4 6 0.20 0.12 0.14 0.16 0.18 0.10 Potential(V vs. Hg/HgO) Scan Rate(mV s⁻¹)

12. Electrochemical performance comparison of hydrothermal samples before and after

heat treatment

Fig. S15. (a) CV curves at 10 mV s⁻¹ for Co/Sn hydroxide coated on graphane film (CSOH@GF) and CSO@GF, respectively, (b) CV curves at different scan rates of CSOH@GF, (c) CV curves of CSOH@GF from 0.1 to 0.2 V at different scan rates and (d) C_{dl} of CSOH@GF.

The linear plots were calculated by subtracting current density at 0.15 V (upper) from current density at 0.15 V (below), then divided by 2. The double layer capacitance (C_{dl}) value was determined from the slope of linear plots.^[S1] The electrochemical active surface area (EASA, cm²) was estimated from dividing the Cdl (μ F) by 60 μ F cm⁻².^[S2]

Fig. S16 N_2 adsorption-desorption isotherms of (a) CSOH@GF and (b) CSO@GF. HK adsorption and BJH pore size distribution curves of (c) CSOH@GF and (d) CSO@GF.

sample	CSOH@GF	CSO@GF
EASA	450.67 cm ²	684.67 cm ²
SSA	39.46 m ² g ⁻¹	51.68 m ² g ⁻¹

Table S3. EASA and SSA of samples.

Fig. S17 Variation of the voltammetric charge (q) with respect to the potential scan rates v: plot of q vs $v^{-1/2}$ of (a) CSOH@GF, (c) CSO@GF, respectively. Plots of 1/q vs $v^{1/2}$ of (b) CSOH@GF and (d) CSO@GF, respectively. (e) Relative contributions of inner and outer voltammetric charge storage process of CSOH@GF and CSO@GF.

Fig. S18 (a) GCD curves at a current density of 2 A g⁻¹ for CSOH@GF and CSO@GF electrodes, respectively. (b) The specific capacitance of CSOH@GF and CSO@GF at different current densities. (c) GCD curves at a series of current densities of CSOH@GF and (d) Corresponding capacitance and Coulombic efficiency of CSOH@GF.

sample	CSOH@GF	CSO@GF
q_o/q_T	10.2%	29.8%
specific capacitance	768.2 F g ⁻¹	2032.6 F g ⁻¹
specific capacity	384.1 C g ⁻¹	1016.3 C g ⁻¹
retention	13.4%	68.9%

Table S4. Specific capacitance and retention of samples.

As concluded from Fig. S15-S18 and Tables S3-S4, the CSO@GF possesses better electrochemical performance than the CSOH@GF sample.

Fig. S19 (a) Nyquist plots of CSOH@GF and CSO@GF electrodes, and the equivalent circuit model of (b) CSOH@GF and (c) CSO@GF.

The R_{ct} of the CSO@GF electrode (1.31 Ω) is slower than that of CSOH@GF (2.16 Ω), indicating the CSO@GF electrode delivers better electrical conduction.

It is concluded from the results of Figs. S6-S19 and Tables S1-S4 that the CSO@GF 10-1 electrode is superior to the CSO@GF 5-1 and CSO@GF 15-1 electrode in electrochemical property, which means 10:1 is the best ratio of cobalt to the tin. In addition, the annealing procedure leads the CSOH@GF change to CSO@GF, which further improves the electrochemical performance.

13. Electrochemical performance comparison of GF, Co₃O₄@GF, and CSO@GF samples

Fig. S20 CV curves of (a) GF and (b) Co₃O₄@GF at different scan rates.

The typical CV curves of $Co_3O_4@GF$ electrode exhibit a pair of oxidation-reduction peaks around 0.45V/0.35V, which are attributed to the conversion of cobalt oxidation states $(Co_3O_4/CoOOH, CoOOH/Co(OH)_2)$ and it can be expressed ^[S3] as follows:

$$Co_3O_4 + OH^- + H_2O \leftrightarrow 3CoOOH + e^-$$
 (S1)

$$Co(OH)_2 + OH^- \leftrightarrow CoOOH + H_2O + e^-$$
 (S2)

Fig. S21 CV curves from 0.1 to 0.2 V at different scan rates of (a) GF, (b) Co₃O₄@GF (c)

CSO@GF, and (d) C_{dl} values of GF, Co_3O_4 @GF and CSO@GF.

Fig. S22 The specific capacitance and Coulombic efficiency of the CSO@GF electrode at various current densities.

Fig. S23 GCD curves of (a) GF and (c) $Co_3O_4@GF$ at various current densities. Corresponding specific capacitance and Coulombic efficiency of (b) GF and (d) $Co_3O_4@GF$.

Fig. S24 Specific capacitances of GF, Co₃O₄@GF, and CSO@GF electrodes at different current densities.

14. Contributions from the capacitive and diffusion charge storage process for Co₃O₄@GF and CSO@GF samples

Fig. S25 Linear extrapolation of outer (a) charge q_0 to $v = \infty$ and (b) total charge q_T to v = 0 for Co₃O₄@GF, (c) charge q_0 to $v = \infty$ and (d) total charge q_T to v = 0 for CSO@GF, and (e) relative contributions of inner and outer voltammetric charge storage process of Co₃O₄@GF and CSO@GF.

sample (C g ⁻¹)	Co ₃ O ₄ @GF	CSO@GF
q _o	138.1	420.9
q_{T}	527.4	1412.4
q_o/q_T	26.2%	29.8%

Table S5. Contributions from the capacitive and diffusion charge storage process for samples.

As shown in Fig. S25 and Table S5, the ratio of q_o/q_T for CSO@GF was larger than that for $Co_3O_4@GF$, suggesting that CSO facilitated the ion migration to the electroactive surface and then promote the charge transfer reactions. It was observed that the contributions of the diffusion-controlled process gradually decreased with the increase of the scan rate (Fig. 5f), which is caused by the entry of electrolyte ions into the lattice.

15. Characterizations of Co₃O₄@GF and CSO@GF after the long-term GCD cycles

Fig. S26 N₂ adsorption-desorption isotherms of (a) $Co_3O_4@GF$ (d) CSO@GF, HK adsorption and BJH pore size distribution curves of $Co_3O_4@GF$ (b) initial and (c) final, CSO@GF (e) initial and (f) final.

16. Characterizations of Fe₂O₃@GF sample

Fig. S27 (a) and (b) SEM images of $Fe_2O_3@GF$, (c), and (d) TEM images of $Fe_2O_3@GF$.

Fig. S28 (a) The full survey XPS spectrum of Fe_2O_3 @GF and XPS spectra for (b) C 1s, (c) Fe 2p, and (d) O 1s, respectively.

Fig. S29 (a) XRD patterns of $Fe_2O_3@GF$, (b) N_2 adsorption/desorption isotherms, and (c) pore size distributions of $Fe_2O_3@GF$.

17. Electrochemical performance of Fe₂O₃@GF sample

Fig. S30 CV curves from 0.1 to 0.2 V at a different scan rates of Fe₂O₃@GF.

Fig. S31 Linear extrapolation of (a) outer charge q_0 to $v = \infty$ and (b) total charge q_T to v = 0 for Fe₂O₃@GF sample.

18. Characterization of Fe₂O₃@GF sample after the long-term GCD cycles

Fig. S32 (a) SEM image of Fe_2O_3 @GF after cyclic test, (b) and (c) N_2 adsorption/desorption isotherms of Fe_2O_3 @GF before and after the cyclic test (d) HK adsorption and BJH pore size distributions of Fe_2O_3 @GF after the cyclic test.

19. Electrochemical performance characteristics of ASC device before and after cycling test

Fig. S33 Electrochemical performance characteristics of ASC device before and after cycling test (a) The Nyquist plots, inset figure of equivalent circuit, (b) CV curves at 10 mV s⁻¹, (c) GCD curves at 1 A g⁻¹. Electrochemical performance characteristics of ASC device after cycling test (d) CV curves at different scan rates, (e) GCD curves from 1 to 20 A g⁻¹ and (f) The corresponding calculated capacitance and CE at different current densities.

Fig. S33a reveals the Nyquist plots of the device before and after the repeated GCD test. After 20000 cycles, the R_{ct} (17.4 Ω) became larger than that of initial (6.6 Ω) and the declined slope of the line is confirmed but still greater than 45°, which refers to the decresed capacitance. As shown in Fig. S33b, the integral area of the final CV curve at 10 mV s⁻¹ has slightly decreased due to the increased impedance. From the GCD curves at 1 A g⁻¹ of the device before and after the cyclic test (Fig. S33c), the specific capacitance is calculated to be 183.4 F g⁻¹, which is slightly less than the initial capacitance (200.2 F g⁻¹). The inflection points still match the CV results well. Fig. 9d-9f shows the electrochemical performance of the device after the long-term cyclic testing. The CV curves at different scan rates (Fig. S33d) are consistent with previous results (Fig. 8d), indicating the device holds the same redox reaction process. From the GCD curves (Fig. S33e) at various current densities, it can be further confirmed that the process is a redox reaction process through non-linear discharge lines, which is in accordance with the CV results. The corresponding calculated specific capacitances are 183.4, 163.2, 142.3, 120.7, and 93.3 F g^{-1} at current densities of 1, 2, 5, 10, and 20 A g^{-1} , respectively (Fig. S33f). The capacitance retention decreased to 50.9% as the current density increased from 1 to 20 A g^{-1} , which is slightly smaller than that of the initial device (59.3%) due to the enlarged internal resistance and reduced SSA. Meanwhile, the Coulombic efficiency increases from 81.2% to 98.9% as the current density increases from 1 to 20 A g^{-1} , indicating excellent charge utilization.

Reference

[S1] S.K. Tiwari, S. Samuel, R.N. Singh, G. Poillerat, J.F. Koenig, P. Chartier, Int. J. Hydrogen Energy, 1995, 20, 9-15.

[S2] S. Levine, A. L. Smith, Discuss. Faraday Soc., 1971, 52, 290-301.

[S3] X. Feng, Y. Huang, C. Li, X. Chen, S. Zhou, X. Gao, C. Chen, Chem. Eng. J., 2019, 368, 51-60.