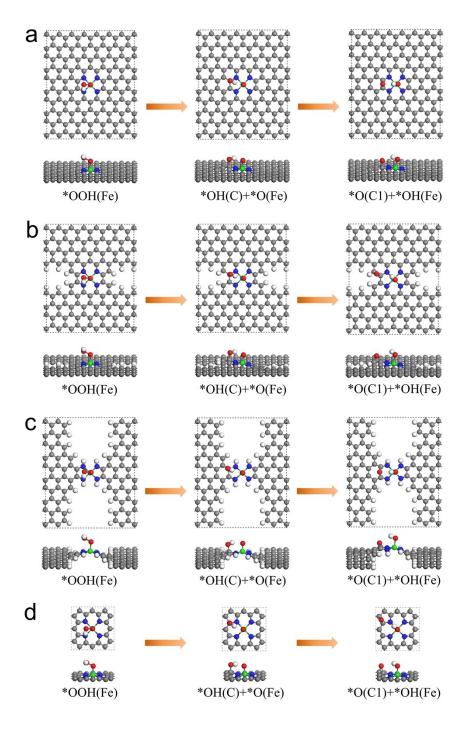
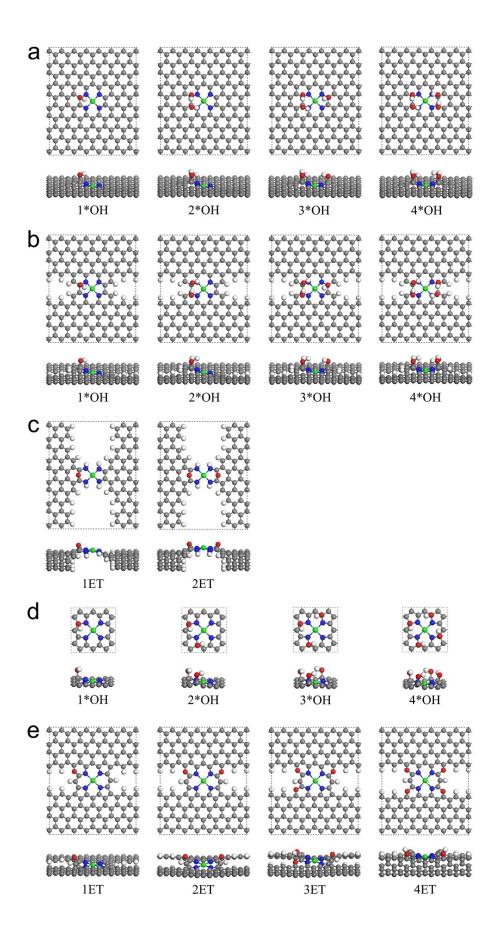
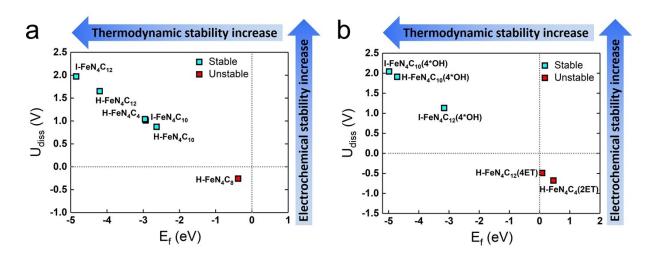
Supplementary Information for


Unveiling the Role of Carbon Oxidation in Irreversible Degradation of Atomically-Dispersed FeN₄ Moieties for Proton Exchange

Membrane Fuel Cells


Xin Tan,* Hassan A. Tahini, Sean C. Smith*

Integrated Materials Design Laboratory, Department of Applied Mathematics, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia


Email: Xin.Tan@anu.edu.au, Sean.Smith@anu.edu.au

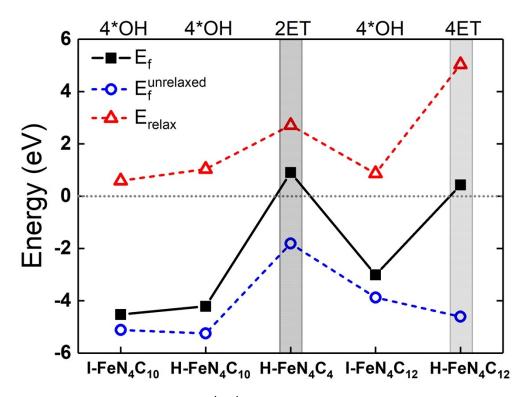

Figure S1. Top (upper) and side (lower) views of atomistic structures of the chemical oxidation of carbon next to FeN_4 moieties through our proposed new carbon oxidation pathway on (a) I-FeN₄C₁₀, (b) H-FeN₄C₁₀, (c) H-FeN₄C₄, and (d) I-FeN₄C₁₂.

Figure S2. Top (upper) and side (lower) views of atomistic structures of (a) I-FeN₄C₁₀, (b) H-FeN₄C₁₀, (c) H-FeN₄C₄, (d) I-FeN₄C₁₂, and (e) H-FeN₄C₁₂ with different depth (coverage of *OH/ET functional groups) of carbon oxidation.

Figure S3. Computed ${}^{E_{f}}$ and ${}^{U_{diss}}$ of Fe atoms for (a) various FeN₄ catalysts and (b) various FeN₄ catalysts with full coverage of *OH/ET functional groups based on DFT(PBE)+U calculations with effective Hubbard-U parameter U-J=3.29 for Fe.^{1,2} It is known that PBE often fail to accurately simulate the systems with localized *d* or *f* orbitals. Therefore, we investigated the stability of various FeN₄ catalysts and FeN₄ catalysts with full coverage of *OH/ET functional groups using the DFT(PBE)+U method. The computed ${}^{E_{f}}$ and ${}^{U_{diss}}$ of Fe atoms for various FeN₄ catalysts with full coverage of *OH/ET functional groups obtained by DFT(PBE)+U are in good agreement with the PBE results (Figure 2a and 3b), which indicates that the stability of different FeN₄ moiety models would not change when considering the self-interaction corrections.

Figure S4. Computed E_f , $E^{unrelaxed}$, and E_{relax} of Fe atoms for different FeN₄ catalysts with full coverage of *OH/ET functional groups.

REFERENCES

- Xu, H.; Cheng, D.; Cao, D.; Zeng, X. C. A Universal Principle for a Rational Design of Single-Atom Electrocatalysts. *Nat. Catal.* 2018, *1*, 339–348.
- (2) Li, X.; Xi, S.; Sun, L.; Dou, S.; Huang, Z.; Su, T.; Wang, X. Isolated FeN₄ Sites for Efficient Electrocatalytic CO₂ Reduction. *Adv. Sci.* 2020, *7*, 2001545.□□□