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SI-2: in situ XRD under vacuum (initial state), under 1 bar H2 (absorbed state) followed by vacuum 
(desorbed state) for bulk, 6.0, 2.0 and 1.4 nm Pd at 25 °C.

SI-3: Selected EXAFS refinements.

SI-4 : Comparison between the PCI curves (expressed as H/Pd vs. Pressure) and the nearest Pd-Pd 
distances determined by EXAFS as function of H2 pressure for bulk, 6.0, 2.0 and 1.4 nm Pd nanoparticles 
at 25 °C. Full and empty symbols stands for absorption and desorption, respectively.

SI-5: Kinetics of hydrogen desorption for bulk, 6.0, 2.0 and 1.4 nm Pd nanoparticles at 25 °C. The data 
are recorded during a pressure drop from 50 to 0 mbar H2 partial pressure in He flow.
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SI-1: TEM images of Pd nanoparticles with averages sizes: 6.0, 2.0 and 1.4 nm.

For Pd nanoparticles with 6.0 nm average size: 

    

For Pd nanoparticles with 2.0 nm average size: 

50 nm50 nm

     

For Pd nanoparticles with 1.4 nm average size: 
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50 nm 50 nm



3

SI-2: in situ XRD under vacuum (initial state), under 1 bar H2 (absorbed state) followed by vacuum 
(desorbed state) for bulk, 6.0, 2.0 and 1.4 nm Pd at 25 °C. XRD patterns of pristine carbon supports 
(HSAG and CA) are also given.
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The star marks the graphitic carbon position (HSAG).
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SI-3: Selected EXAFS refinements: experimental curves are represented by points and the 
corresponding fit by dotted lines.  
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SI-4 : Comparison between the PCI curves (expressed as H/Pd vs. Pressure) and the nearest Pd-Pd 
distances determined by EXAFS as function of H2 pressure for bulk, 6.0, 2.0 and 1.4 nm Pd nanoparticles 
at 25 °C. Full and empty symbols stands for absorption and desorption, respectively.
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SI-5: Kinetics of hydrogen desorption for bulk, 6.0, 2.0 and 1.4 nm Pd nanoparticles at 25 °C. The data 
are recorded during a pressure drop from 50 to 0 mbar H2 partial pressure in He flow.
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Bulk Pd has the slowest kinetics for hydrogen desorption and reaches the initial metal value after 

around 400 s whereas, all nanoparticles attain a stable value of RPd-Pd distance in less than 200 s. 

However, the stabilisation values for all nanoparticles are above the bulk Pd, clearly indicating a H 

trapping, which is size dependent: the smaller the size, the larger final RPd-Pd value. Consequently, this 

is a clear size effect not a kinetic issue that can be explained by the H trapping inside the lattice of Pd. 
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SI-6: TB calculation details and figures.

The TB parameters used in this study are fitted to reproduce several bulk physical properties of Pd. 

They are obtained by fitting on experimental values of the lattice parameter, of the cohesive energy, 

and of the elastic moduli (bulk modulus and the two shear moduli) for the fcc structure as seen in Table 

I.

a(A) Cohesive 
energy 
(eV/at)

B (GPa) C11 (GPa) C12 (GPa) C44 (GPa)

Experiments 2.75 -3.90 189 234 176 72
TB model 2.75 -3.90 194 241 170 67

Table 1: Comparison of our TB model with experimental data ([1] see references therein): lattice 
parameters (a), cohesive energies, bulk modulus and elastic modulii (Cij).

The analysis of interatomic distances is performed using atomic scale simulations from our TB potential 

developed to describe Pd-Pd bonds. In order to put an emphasis on a size and shape effects, three 
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types of NPs (icosahedral, cuboctahedral and truncated octahedron) have been considered containing 

a number of atoms ranging from few tens to few thousand of atoms. The equilibrium structures are 

obtained by performing simulated annealing between 300 and 10 K to get a complete relaxation of the 

NPs. 

 Fig. SI-5 depicts the variation of the relative contraction of the lattice in Pd nanoparticles as a function 

of the cluster size. The distance between Pd-Pd atoms clearly decreases with decreasing cluster size, 

to reach around 2.5-3.5% of contraction for the smallest NP studied in this work. This tendency is in 

good agreement with previous TB and DFT calculations to deal with Pd [2] and Ag NPs [3], respectively. 

To go beyond and highlight a shape effect, we now focus on the variation of the first neighbor distances 

along the radius of the NP for different FCC particles morphologies and various sizes. As seen in Fig. 

SI-5 2b, two different behaviours can be identified. In case of cuboctahedral and truncated octahedron 

NPs, the Pd-Pd distances remain almost constant in the core but decreases in a meaningful way close 

to the surface. This tendency is in agreement with infinite surfaces of transition metals where it has 

been shown that TB model yields contraction in the interlayer separation of the first two layers as 

observed experimentally [4, 5]. The same surface contraction is observed for icosahedral NPs. 

However, due to the presence of a center atom in this particular shape, elastic effects are strongly 

different and lead to a core under large strain (up to almost 10% for large particles). Obviously, it is 

tempting to think that the icosahedral shape is not adapted to incorporate H atoms since many 

interstitial sites are unavailable. 
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